537 research outputs found

    Game theory based Ad-hoc On Demand Distance Vector Routing Protocol to Extend the Wireless Sensor Networks Life Time

    Get PDF
    This paper proposes a solution to increase the energy life time of wireless sensor networks (WSNs) via a concept of game theory enabled ad-hoc on demand distance vector (AODV) routing algorithm. Game theory is an optimal promising candidate for decision making in a wireless networking scenario to find the optimal path for data packets transfer between source node and destination node, where combination with the AODV routing algorithm, a procedure of game theory enabled AODV (GTEAODV) is developed and proposed in this research paper. The developed and proposed methodology is validated through simulation in NS2 environment and the results show an improvement in energy life time of the order of 30-35% in comparison to the existing routing methodology which uses co-operative routing techniques among the nodes in WSN. Further, the throughput of game theory enabled adhoc on demand routing is also highly improved in comparison to existing traditional approaches though obtained results. Though, game theory approach is an existing approach concatenation of it with AODV can provide increased network performance which is significant as portrayed in research results shown in the paper. Hence, by virtue of providing enhanced energy life time and data security through the nature of the algorithm, the proposed GTEAODV algorithm can be employed in defence applications for secure data transmission and reception for forthcoming deployment of 5G systems which are blossoming in world wide scenario

    Energy-aware strategy for data forwarding in IoT ecosystem

    Get PDF
    The Internet of Things (IoT) is looming technology rapidly attracting many industries and drawing research attention. Although the scale of IoT-applications is very large, the capabilities of the IoT-devices are limited, especially in terms of energy. However, various research works have been done to alleviate these shortcomings, but the schemes introduced in the literature are complex and difficult to implement in practical scenarios. Therefore, considering the energy consumption of heterogeneous nodes in IoT eco-system, a simple energy-efficient routing technique is proposed. The proposed system has also employed an SDN controller that acts as a centralized manager to control and monitor network services, there by restricting the access of selfish nodes to the network. The proposed system constructs an analytical algorithm that provides reliable data transmission operations and controls energy consumption using a strategic mechanism where the path selection process is performed based on the remaining energy of adjacent nodes located in the direction of the destination node. The proposed energy-efficient data forwarding mechanism is compared with the existing AODV routing technique. The simulation result demonstrates that the protocol is superior to AODV in terms of packet delivery rate, throughput, and end-to-end delay

    The Secure and Energy Efficient Data Routing in the IoT based Network

    Get PDF
    The business applications such as weather forecasting, traffic management, weather forecasting, traffic management, etc., are enormously adopting Internet of Things(IoT). While scaling of these applications are fast, the device/sensor capabilities, particularly in terms of battery life and energy efficiency is limited. Despite of intensive research conducted to address these shortcomings, Wireless IoT Sensor Network(WIoTSN) still cannot assure 100\% efficient network life. Therefore, the core objective of the thesis is to provide an overview of energy efficiency of proactive(OLSR) and reactive(DSR and AODV) data routing protocols by scaling the size of network, i.e. number of sensor nodes, data packet size, data transmission rate and speed of mobile sink node. It also reviews the importance of security in WIoTSN. The two approaches, such as literature review and simulation testing, are used to achieve the objective of the thesis. The literature review provides information about reactive and proactive protocols and their mechanism for route discovery. Similarly, the network simulator tool NS3 is used for running simulation to evaluate the performance of selected routing protocols for energy efficiency. The thesis results showed the effect of scaling the parameters selected for experimental purpose on the energy efficiency of proactive and reactive data routing protocols. The simulation results prove that the reactive protocol DSR outperforms another reactive protocol AODV and proactive protocol OLSR in energy efficiency. From the security perspective, the thesis also emphasizes its need in IoT and suggest to minimize wasteful resources in WIoTSN and use them by restructuring the network for secure energy-efficient data routing protocols

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    VANET: Analysis of Black hole Attack using CBR/UDP Traffic Pattern with Hash Function and GPSR Routing Protocol

    Get PDF
    With momentum of time huge development occurred in the field of MANET and VANET. As we know when new technology emerges it came with many advanages but definitely some limitation must be there. In WSN security is one of biggest challenges which we need to tackle to implement adhoc network. Main reason behind this is dynamic topology of sensing node because nodes are dynamic in nature rather than static. As technology came into existence side by side unethical activity also take place which try to access the data illegally to gain personnel profit. There are so many types of attack possibilities are there in adhoc network. Attack can be classified into active and passive. In our research article oue main concern is on black hole attack. According to this attack a malicious node with high priority number is deployed in between other nodes. Now this malicious node access the data and sends acknowledgement to source that data received. Source node will think that acknowledgement is sent by destination node but actually it is sent by malicious node.  In this research article performance analysis of the black hole attack in Vehicular Ad Hoc Network is executed
    • …
    corecore