48,129 research outputs found

    Multiscale viscoplastic-viscodamage analysis of shape memory polymer fibers with application to self healing smart materials

    Get PDF
    Self-healing smart material systems have been introduced into the research arena and they have already been deployed into industrial applications. The Close-Then-Heal (CTH) healing mechanism for polymeric self-healing systems is addressed herein and then a new generation of Shape Memory Polymer (SMP) based self-healing system is proposed in this work. This system incorporates SMP fibers to close the cracks while the embedded Thermoplastic Particles (TPs) are diffused into the crack surfaces upon heating and provide a molecular level of healing. The SMP fiber manufacturing procedure is briefly addressed in this work in which the bobbin of SMP fibers are heat treated in a specific procedure and then they are wound to produce SMP fibers. The performance of the proposed healing system is highly dependent on mechanical responses of SMP fibers. The polyurethane SMP fibers are categorized as semicrystalline polymeric material systems. These semicrystalline SMP fibers are then constituted from two distinguishable phases, which are amorphous and crystalline polymers. Such a multiphase system can be evaluated through a multiscale analysis within the micromechanics framework in which the macroscopic mechanical responses are evolved through averaging the microscale mechanical fields. Then in this research the constitutive relation for each of the micro-constituents are utilized to compute the microscale mechanical fields and then these fields are correlated to the macroscopic field through the micromechanics framework. The cyclic viscoplastic and viscodamage of these fibers are of utmost importance for designing self-healing systems in which repeatability of the healing process and the healing efficiency for subsequent healing cycles are highly dependent on cyclic responses of these fibers. A new approach in measurement of cyclic damage of SMP fibers is proposed in this work in which the reduction in recoverable stress after each cyclic stress recovery is correlated to the damage. In this approach the damage is interpreted as failure of the polymeric bonds to recover their original shape (SM effect). In general the proposed self-healing scheme establishes a new generation of self-healing systems while the developed theoretical multiscale analysis provides a well-structured method to investigate the cyclic viscoplastic and viscodamage of the SMP fibers

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Wireless industrial communication for connected shuttle systems in warehouses

    Get PDF

    Particle coating using foams and bubbles : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemical and Bioprocess Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    This thesis investigates powder coating using foams or bubbles. The work initially started on foams. Wettability studies first showed that foams can be used to coat powders. Research then focussed on the fundamental unit of foams, the bubble. An experimental apparatus was designed and built to perform particle-bubble impact studies in air. Bubble solutions comprised of water, hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulphate (SDS). Four distinct physical behaviours occur when a particle impacts a bubble: (i) particle capture, (ii) particle slide-off, (iii) bubble burst and (iv) bubble self-healing. The rate processes that occur during particle-bubble impact are; (i), surface area creation by bubble film stretching; (ii), delivery of surface active molecules to the newly created surface; and (iii), stress dissipation as the film is stretched. The ability of the solutions to do (ii) and (iii) are highly complex relying on the thermodynamic equilibrium of the solutions and the local perturbations in the near surface region. Therefore, establishing quantitative boundaries of behaviour is a difficult exercise. It is proposed that, for solutions above the cac or cmc, (critical aggregate concentration, critical micelle concentration) where self-healing occurs, the rate of (ii) > rate of (i) and the rate of (iii) > rate of (i). For solutions below the cac, where bursting occurs, the opposite is true, the rate of (ii) < rate of (i) and the rate of (iii) < rate of (i). Intermediate behaviours such as slide-off of capture are within the range of self-healing behaviours, but where the energy of the particle is insufficient to penetrate the bubble. These behaviours are explained by complexation theory. For SDS concentration ≥ cac and cmc, small aggregates of SDS and HPMC locally supply surfactant to the surface of the stretching bubble film. This maintains low surface tension stress and self-healing results. For SDS concentrations < cac, self-healing occurs because the complexation is a HPMC-SDS sea containing SDS islands. The HPMC-SDS sea structure is sufficiently interlinked to simply stretch with the film, while the SDS islands de-aggregate quickly in the near surface region to supply the newly created surface with surfactant. Here the supply rate is faster than the stretching and so the new surface area is populated with SDS molecules. In contrast bursting occurs when the complexation is HPMC-SDS islands in a SDS sea. Here, the rapid film extension is so fast that the islands of HPMC-SDS become isolated and the film loses structural homogeneity. Furthermore, the rate of new surface creation is too fast for diffusion of SDS molecules from the bulk ‘sea’ to the newly created surface. This results in both an inhomogeneous structure and local increases in surface tension, causing both stress concentration in the film and the Marangoni effect. Extensional viscosity measurements, conducted in collaboration with Monash University, Australia, produced three behaviours as solutions were thinned: bead-on-string, blob and long-lived filaments. Solutions which produced long lived filaments here correspond to those that self-healed during particle impact (when the impact velocity was sufficient). It is proposed that this long-lived filament behaviour is due to the SDS concentration being > cmc, where the SDS micelles act like ‘ball-bearings’ between the extending HPMC chains. Coatings were characterised by SEM and gravimetric measurement. Cross-sectional imaging of the soft particle that penetrated self-healing bubbles were found to have a continuous coating layer around the particle. Surface topography of bubble coated particles were compared with classical droplet coated single particles from the literature. Bubble coated particles were found to be smoother than the droplet coated particle. The knowledge gained here was used to suggest how an industrial-scale particle coater using bubbles may be designed

    Ultrasonic inspection and self-healing of Ge and 3C-SiC semiconductor membranes

    Get PDF
    Knowledge of the mechanical properties and stability of thin film structures is important for device operation. Potential failures related to crack initiation and growth must be identified early, to enable healing through e.g. annealing. Here, three square suspended membranes, formed from a thin layer of cubic silicon carbide (3C-SiC) or germanium (Ge) on a silicon substrate, were characterised by their response to ultrasonic excitation. The resonant frequencies and mode shapes were measured during thermal cycling over a temperature range of 20--100~∘^\circC. The influence of temperature on the stress was explored by comparison with predictions from a model of thermal expansion of the combined membrane and substrate. For an ideal, non-cracked sample the stress and Q-factor behaved as predicted. In contrast, for a 3C-SiC and a Ge membrane that had undergone vibration and thermal cycling to simulate extended use, measurements of the stress and Q-factor showed the presence of damage, with the 3C-SiC membrane subsequently breaking. However, the damaged Ge sample showed an improvement to the resonant behaviour on subsequent heating. Scanning electron microscopy showed that this was due to a self-healing of sub-micrometer cracks, caused by expansion of the germanium layer to form bridges over the cracked regions, with the effect also observable in the ultrasonic inspection
    • …
    corecore