73,609 research outputs found

    Position control of an industrial robot using an optical measurement system for machining purposes

    Get PDF
    A series of mechanical properties and disturbances limit the accuracy achievable in robotic applications. External control of the end effector position is commonly known as being an appropriate mean to increase accuracy. This paper presents an approach for position control of industrial robots using the pass-through between an industrial CNC and servomotors. A CNC-controlled robot is used together with an external optical measurement system to close the feedback loop of robot end effector and robot controller in order to improve robot accuracy. For short cycle times and implementation reasons a PLC is used for signal processing and control implementation. The relevance of the approach is outlined in experiments. The robot behaviour in free space motion and in machining application is analysed with the optical measurement system and a CMM

    Improving the Accuracy of Industrial Robots by offline Compensation of Joints Errors

    Get PDF
    The use of industrial robots in many fields of industry like prototyping, pre-machining and end milling is limited because of their poor accuracy. Robot joints are mainly responsible for this poor accuracy. The flexibility of robots joints and the kinematic errors in the transmission systems produce a significant error of position in the level of the end-effector. This paper presents these two types of joint errors. Identification methods are presented with experimental validation on a 6 axes industrial robot, STAUBLI RX 170 BH. An offline correction method used to improve the accuracy of this robot is validated experimentally

    Theory of the Arbitration Process

    Get PDF
    A sensor fusion method for state estimation of a flexible industrial robot is developed. By measuring the acceleration at the end-effector, the accuracy of the arm angular position, as well as the estimated position of the end-effector are improved. The problem is formulated in a Bayesian estimation framework and two solutions are proposed; the extended Kalman filter and the particle filter. In a simulation study on a realistic flexible industrial robot, the angular position performance is shown to be close to the fundamental Cramér-Rao lower bound. The technique is also verified in experiments on an ABB robot, where the dynamic performance of the position for the end-effector is significantly improved.Vinnova Excellence Center LINK-SICSSF project Collaborative Localizatio

    Contactless medium scale industrial robot collaboration

    Get PDF
    The growing cost of High-Value/Mix and Low Volume (HMLV) industries like Aerospace is heavily based on industrial robots and manual operations done by operators [1]. Robots are excellent in repeatability by HMLV industries need changes with every single product. On the other hand human workforce is good at variability and intelligence but cost a lot as production rate is not comparable to robots and machines. There are flexible systems which have been specifically introduced for this type of industry FLEXA is one of them. But still there is need of collaboration between human and robot to get the flexible and cost effective solution [2]. A comprehensive survey has been conducted specifically on the issue of Human Robot collaboration [3] which laid out many advantages of this approach includes flexibility, cost-effectiveness and use of robot as intelligent assistant. There are several attempts have been made for Human Robot Collaboration for HMLV industry and Chen et al. attempt is one of them

    A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts

    Get PDF
    This paper presents a multi-robot system for manufacturing personalized medical stent grafts. The proposed system adopts a modular design, which includes: a (personalized) mandrel module, a bimanual sewing module, and a vision module. The mandrel module incorporates the personalized geometry of patients, while the bimanual sewing module adopts a learning-by-demonstration approach to transfer human hand-sewing skills to the robots. The human demonstrations were firstly observed by the vision module and then encoded using a statistical model to generate the reference motion trajectories. During autonomous robot sewing, the vision module plays the role of coordinating multi-robot collaboration. Experiment results show that the robots can adapt to generalized stent designs. The proposed system can also be used for other manipulation tasks, especially for flexible production of customized products and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial Informatics, Key words: modularity, medical device customization, multi-robot system, robot learning, visual servoing, robot sewin
    corecore