785 research outputs found

    Induction Heating of Two Magnetically Independent Loads With a Single Transmitter

    Get PDF
    This article introduces the design of a system capable of heating two magnetically independent ferromagnetic loads placed on different horizontal planes, which uses a combination of induction heating and inductive coupling, called inductively coupled heating. The system uses a single primary inductor acting as a transmitter to transfer power to a secondary inductor attached to the bottom load, which is connected electrically with a third inductor that heats the top load. Since power of the whole system is supplied by a simple half-bridge inverter, the ratio of the delivered power to each of the loads, which is critical for cooking results, is entirely dependent on the system's geometry, coil's number of turns, and compensation capacitors. A finite-element model is used to simulate the magnetic fields generated by inductor currents and calculate the impedance matrix. With the impedance, capacitor values and inductors’ number of turns are selected with the objective of achieving a high power ratio between the top and bottom zones, as well as minimizing stress in the electronics. First, a prototype was built to validate the impedance results in the small-signal regime, and then, the full power regime was used to verify power and current simulation

    Dynamic modelling and control schemes for current-source resonant converters

    Get PDF
    Versió amb diverses seccions retallades, per drets de l'editorThis thesis focuses on the control methods applied to current source resonant converters, especially in two different applications of switching power supplies and wire-less power transfer systems. In fact, the existing applications are mostly working with voltage source resonant converters. For voltage-source resonant converters, many control strategies have been analyzed and investigated, turning this into a mature technology nowadays. The current-source resonant converter is an alternative solution as they offer well-known advantages such as non-pulsating input current, low stress for switches, simple driving circuitry, and short circuit protection capabilities. However, there is an obvious lack of control methods applicable to current-source resonant converters. In addition, obtaining an appropriate dynamic model to be used in control design is the other challenging issue in this field. Hence, the objectives of this thesis are used to fill these gaps. The proposed control schemes are: - Frequency modulation control scheme applied to a DC/DC current-source parallel resonant converter. - Sliding mode control scheme with amplitude modulation applied to a DC/DC current-source parallel resonant converter. - A control scheme for a multiple-output DC/DC current-source parallel resonant converter. - A communication-less control scheme for a variable air-gap wireless energy transfer system using a current-source resonant converter.Esta tesis doctoral está centrada en los métodos de control aplicados a los convertidores resonantes con fuente de corriente, especialmente en dos aplicaciones distintas como son fuentes de alimentación conmutadas y sistemas de transferencia de energía sin hilos. De hecho, las aplicaciones existentes trabajan principalmente con convertidores alimentados mediante fuentes de tensión. Para los convertidores resonantes con fuente de tensión, se han analizado muchas estrategias de control en la literatura, lo que hace hoy en día que esta sea una tecnología madura. El convertidor resonante con fuente de corriente es una solución alternativa, que ofrece ventajas conocidas como corriente de entrada no pulsante, baja tensión para interruptores, circuitos de conducción sencillos y capacidades de protección contra cortocircuitos. Sin embargo, existe una falta evidente de métodos de control aplicables a los convertidores resonantes con fuente de corriente. Además, otro desafío en este tema es la obtención de modelos dinámicos apropiados para el diseño del control. Por lo tanto, los objetivos de esta tesis se utilizan para llenar estos vacíos. Los esquemas de control propuestos son: - Esquema de control en frecuencia aplicado a un convertidor resonante paralelo con fuente de corriente para reguladores de tensión en continua - Esquema de control en modo de deslizamiento con modulación de amplitud aplicado a un convertidor resonante paralelo con fuente de corriente para reguladores de tensión en continua. - Esquema de control para un convertidor resonante paralelo con fuente de corriente para la regulación de tensión en continua de varias salidas. - Esquema de control sin comunicaciones para un sistema de transferencia de energía sin hilos con un transformador con entrehierro variable basado en un convertidor resonante con fuente de corriente.Postprint (published version

    A flexible cooking zone composed of partially overlapped inductors

    Get PDF
    Domestic induction cookers are evolving from fixed cooking areas to flexible surfaces in such a way that the pot can be placed at any position. This implies the use of a larger number of reduced-sized inductors, which present a lower efficiency. As a solution to increase the efficiency while maintaining the flexibility, we propose the use of partially overlapped inductors of a larger size. This concept is currently in use in wireless power transfer systems, where the transmitter arrangement consists of several overlapped coils. The aim of this paper is to evaluate this concept applied to domestic induction heating appliances, with special emphasis in analyzing the effects of introducing the multicoil system with dissipative media. Moreover, the losses in the winding will be studied in detail. The system will be prototyped and tested, delivering up to 3.7 kW

    Double Resonant High-Frequency Converters for Wireless Power Transfer

    Get PDF
    This thesis describes novel techniques and developments in the design and implementation of a low power radio frequency (40kHz to 1MHz) wireless power transfer (WPT) system, with an application in the wireless charging of autonomous drones without physical connection to its on-board Battery Management System (BMS). The WPT system is developed around a matrix converter exploiting the benefits such as a small footprint (DC-link free), high efficiency and high power density. The overall WPT system topology discussed in this thesis is based on the current state-of-the-art found in literature, but enhancements are made through novel methods to further improve the converter’s stability, reduce control complexity and improve the wireless power efficiency. In this work, each part of the system is analysed and novel techniques are proposed to achieve improvements. The WPT system design methodology presented in this thesis commences with the use of a conventional full-bridge converter. For cost-efficiency and to improve the converters stability, a novel gate drive circuit is presented which provides self-generated negative bias such that a bipolar MOSFET drive can be driven without an additional voltage source or magnetic component. The switching control sequences for both a full-bridge and single phase to single phase matrix converter are analysed which show that the switching of a matrix converter can be considered to be the same as a full-bridge converter under certain conditions. A middleware is then presented that reduces the complexity of the control required for a matrix converter and enables control by a conventional full-bridge controller (i.e. linear controller or microcontroller). A novel technique that can maximise and maintain in real-time the WPT efficiency is presented using a maximum efficiency point tracking approach. A detailed study of potential issues that may affect the implementation of this novel approach are presented and new solutions are proposed. A novel wireless pseudo-synchronous sampling method is presented and implemented on a prototype system to realise the maximum efficiency point tracking approach. Finally, a new hybrid wireless phase-locked loop is presented and implemented to minimise the bandwidth requirements of the maximum efficiency point tracking approach. The performance and methods for implementation of the novel concepts introduced in this thesis are demonstrated through a number of prototypes that were built. These include a matrix converter and two full WPT systems with operating frequencies ranging from sub-megahertz to megahertz level. Moreover, the final prototype is applied to the charging of a quadcopter battery pack to successfully charge the pack wirelessly whilst actively balancing the cells. Hence, fast battery charging and cell balancing, which conventionally requires battery removal, can be achieved without re-balance the weight of the UAV

    GaN-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer

    Get PDF
    Wireless power transfer (WPT) has attracted great attention from industry and academia due to high charging flexibility. However, the efficiency of WPT is lower and the cost is higher than the wired power transfer approaches. Efforts including converter optimization, power delivery architecture improvement, and coils have been made to increase system efficiency.In this thesis, new power delivery architectures in the WPT of consumer electronics have been proposed to improve the overall system efficiency and increase the power density.First, a two-stage transmitter architecture is designed for a 100 W WPT system. After comparing with other topologies, the front-end ac-dc power factor correction (PFC) rectifier employs a totem-pole rectifier. A full bridge 6.78 MHz resonant inverter is designed for the subsequent stage. An impedance matching network provides constant transmitter coil current. The experimental results verify the high efficiency, high PF, and low total harmonic distortion (THD).Then, a single-stage transmitter is derived based on the verified two-stage structure. By integration of the PFC rectifier and full bridge inverter, two GaN FETs are saved and high efficiency is maintained. The integrated DCM operated PFC rectifier provides high PF and low THD. By adopting a control scheme, the transmitter coil current and power are regulated. A simple auxiliary circuit is employed to improve the light load efficiency. The experimental results verify the achievement of high efficiency.A closed-loop control scheme is implemented in the single-stage transmitter to supply multiple receivers simultaneously. With a controlled constant transmitter current, the system provides a smooth transition during dynamically load change. ZVS detection circuit is proposed to protect the transmitter from continuous hard switching operation. The control scheme is verified in the experiments.The multiple-reciever WPT system with the single-stage transmitter is investigated. The system operating range is discussed. The method of tracking optimum system efficiency is studied. The system control scheme and control procedure, targeting at providing a wide system operating range, robust operation and capability of tracking the optimized system efficiency, are proposed. Experiment results demonstrate the WPT system operation

    Dynamic modelling and control schemes for current-source resonant converters

    Get PDF
    This thesis focuses on the control methods applied to current source resonant converters, especially in two different applications of switching power supplies and wire-less power transfer systems. In fact, the existing applications are mostly working with voltage source resonant converters. For voltage-source resonant converters, many control strategies have been analyzed and investigated, turning this into a mature technology nowadays. The current-source resonant converter is an alternative solution as they offer well-known advantages such as non-pulsating input current, low stress for switches, simple driving circuitry, and short circuit protection capabilities. However, there is an obvious lack of control methods applicable to current-source resonant converters. In addition, obtaining an appropriate dynamic model to be used in control design is the other challenging issue in this field. Hence, the objectives of this thesis are used to fill these gaps. The proposed control schemes are: - Frequency modulation control scheme applied to a DC/DC current-source parallel resonant converter. - Sliding mode control scheme with amplitude modulation applied to a DC/DC current-source parallel resonant converter. - A control scheme for a multiple-output DC/DC current-source parallel resonant converter. - A communication-less control scheme for a variable air-gap wireless energy transfer system using a current-source resonant converter.Esta tesis doctoral está centrada en los métodos de control aplicados a los convertidores resonantes con fuente de corriente, especialmente en dos aplicaciones distintas como son fuentes de alimentación conmutadas y sistemas de transferencia de energía sin hilos. De hecho, las aplicaciones existentes trabajan principalmente con convertidores alimentados mediante fuentes de tensión. Para los convertidores resonantes con fuente de tensión, se han analizado muchas estrategias de control en la literatura, lo que hace hoy en día que esta sea una tecnología madura. El convertidor resonante con fuente de corriente es una solución alternativa, que ofrece ventajas conocidas como corriente de entrada no pulsante, baja tensión para interruptores, circuitos de conducción sencillos y capacidades de protección contra cortocircuitos. Sin embargo, existe una falta evidente de métodos de control aplicables a los convertidores resonantes con fuente de corriente. Además, otro desafío en este tema es la obtención de modelos dinámicos apropiados para el diseño del control. Por lo tanto, los objetivos de esta tesis se utilizan para llenar estos vacíos. Los esquemas de control propuestos son: - Esquema de control en frecuencia aplicado a un convertidor resonante paralelo con fuente de corriente para reguladores de tensión en continua - Esquema de control en modo de deslizamiento con modulación de amplitud aplicado a un convertidor resonante paralelo con fuente de corriente para reguladores de tensión en continua. - Esquema de control para un convertidor resonante paralelo con fuente de corriente para la regulación de tensión en continua de varias salidas. - Esquema de control sin comunicaciones para un sistema de transferencia de energía sin hilos con un transformador con entrehierro variable basado en un convertidor resonante con fuente de corriente

    Sustainable 3D printed electronics with sheath conductors

    Get PDF
    Sustainable manufacturing practices have been an essential consideration in recent years. 3D printing will be a key technology in the transition towards sustainability because it minimizes material consumption and waste generation. One area that could benefit from 3D printing techniques would be the production of printed circuit boards and electronics in which most of the copper used is etched in subsequent steps. Comparatively, 3D printing minimizes waste by depositing conductive material only where desired. However, the conductive material used, commonly a silver-based printable material, is expensive and further reductions are required to ensure sustainability. In high frequency applications, owing to the skin effect, the core of a conductor carries little electrical current and thus could be replaced with a cheaper plastic. To accomplish this, custom nozzles capable of printing these sheath conductors were developed and tested by printing an embedded inductor for wireless power transfer

    Multi-Frequency Modulation and Control for DC/AC and AC/DC Resonant Converters

    Get PDF
    Harmonic content is inherent in switched-mode power supplies. Since the undesired harmonics interfere with the operation of other sensitive electronics, the reduction of harmonic content is essential for power electronics design. Conventional approaches to attenuate the harmonic content include passive/active filter and wave-shaping in modulation. However, those approaches are not suitable for resonant converters due to bulky passive volumes and excessive switching losses. This dissertation focuses on eliminating the undesired harmonics from generation by intelligently manipulating the spectrum of switching waveforms, considering practical needs for functionality.To generate multiple ac outputs while eliminating the low-order harmonics from a single inverter, a multi-frequency programmed pulse width modulation is investigated. The proposed modulation schemes enable multi-frequency generation and independent output regulation. In this method, the fundamental and certain harmonics are independently controlled for each of the outputs, allowing individual power regulations. Also, undesired harmonics in between output frequencies are easily eliminated from generation, which prevents potential hazards caused by the harmonic content and bulky filters. Finally, the proposed modulation schemes are applicable to a variety of DC/AC topologies.Two applications of dc/ac resonant inverters, i.e. an electrosurgical generator and a dual-mode WPT transmitter, are demonstrated using the proposed MFPWM schemes. From the experimental results of two hardware prototypes, the MFPWM alleviates the challenges of designing a complicated passive filter for the low-order harmonics. In addition, the MFPWM facilitates combines functionalities using less hardware compared to the state-of-the-art. The prototypes demonstrate a comparable efficiency while achieving multiple ac outputs using a single inverter.To overcome the low-efficiency, low power-density problems in conventional wireless fast charging, a multi-level switched-capacitor ac/dc rectifier is investigated. This new WPT receiver takes advantage of a high power-density switched-capacitor circuit, the low harmonic content of the multilevel MFPWMs, and output regulation ability to improve the system efficiency. A detailed topology evaluation regarding the regulation scheme, system efficiency, current THD and volume estimation is demonstrated, and experimental results from a 20 W prototype prove that the multi-level switched-capacitor rectifier is an excellent candidate for high-efficiency, high power density design of wireless fast charging receiver

    Heikosti kytketyn langattoman tehonsiirtojärjestelmän tehovahvistimen suunnittelu ja toteutus

    Get PDF
    The exploitation of magnetic resonance induction in wireless power transfer system where two magnetically coupled tuned resonators forms an energy transfer path is introduced. Starting from equivalent circuit of coupled LC-resonators the expression for maximum power transfer efficiency was derived and it was found that coupling factor and resonators Q values are determinant in power transfer efficiency. Class D ZVS (zero voltage switching) and Class E switch mode power amplifiers were studied and prototype power stages were designed and implemented. Both amplifiers were tested with A4WP compliant coil set at 6.78MHz operation frequency. Several performance tests were carried out and at the end amplifier topologies were compared with respect to power transfer efficiency. According to the results both amplifier topologies met the high efficiency requirement needed in wireless power transfer, even though those both have their own optimal operation conditions where maximum efficiency is achieved. As a result topology selection table was presented as a tool for designer and design guidelines concerning amplifier topology selection, PWB layout, amplifier ZVS tuning and EMI were introduced. Previously in RF engineering exclusively seen GaN FETs are breaking into area of power electronics and the interest in their excellent switching characteristics brought them also part of this work. Both amplifiers were implemented by using GaN FETs as a switching device and high performance were proved by thermal measurements and observing switching waveforms. Main characteristics of GaN FET were studied and some qualitative comparison with MOSFET introduced.Magneettista resonanssi-induktiota hyödyntävässä langattomassa tehonsiirtojärjestelmässä kaksi heikosti toisiinsa kytkettyä resonaattoria muodostavat tehonsiirtotien. Lähtien liikkeelle kytkettyjen LC-resonaattorien piirikaaviosta johdetaan lauseke tehonsiirtohyötysuhteelle ja havaitaan kytkentäkertoimen ja resonaattoreiden Q-arvojen olevan määrääviä tekijöitä tehonsiirtohyötysuhteen arvossa. Työssä suunnitellaan ja toteutetaan kytkemistekniikkaan perustuvat D ja E-luokan tehovahvistimet. Kumpikin vahvistin testataan A4WP standardin mukaisella lähetin-vastaanotin parilla 6,78 MHz toimintataajuudella. Useita suorituskyky mittauksia suoritetaan ja lopuksi vahvistin topologioiden hyötysuhde arvoja vertaillaan. Kummankin vahvistin topologian havaitaan täyttävän langattoman tehonsiirto järjestelmän korkeat hyötysuhde vaatimukset, vaikka vahvistimien optimaaliset toiminta olosuhteet eroavatkin toisistaan. Työ tarjoaa suunnittelijoille ohjeita oikean vahvistin topologian valinnassa, piirilevyn suunnittelussa, vahvistimien optimaalisesta virityksestä sekä EMI näkökohdista. Aiemmin yksinomaan radiotekniikassa käytetyt GaN FET transistorit ovat alkaneet herättää kiinnostusta myös tehoelektroniikan puolella. GaN FET kytkinkomponenttien erinomaiset kytkentäominaisuudet toivat ne myös osaksi tätä työtä. Työn molemmat vahvistimet toteutettiin GaN FET kytkimillä ja niiden erinomainen suorituskyky vahvistettiin mittauksin
    corecore