1,378 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Link prediction in very large directed graphs: Exploiting hierarchical properties in parallel

    Get PDF
    Link prediction is a link mining task that tries to find new edges within a given graph. Among the targets of link prediction there is large directed graphs, which are frequent structures nowadays. The typical sparsity of large graphs demands of high precision predictions in order to obtain usable results. However, the size of those graphs only permits the execution of scalable algorithms. As a trade-off between those two problems we recently proposed a link prediction algorithm for directed graphs that exploits hierarchical properties. The algorithm can be classified as a local score, which entails scalability. Unlike the rest of local scores, our proposal assumes the existence of an underlying model for the data which allows it to produce predictions with a higher precision. We test the validity of its hierarchical assumptions on two clearly hierarchical data sets, one of them based on RDF. Then we test it on a non-hierarchical data set based on Wikipedia to demonstrate its broad applicability. Given the computational complexity of link prediction in very large graphs we also introduce some general recommendations useful to make of link prediction an efficiently parallelized problem.Peer ReviewedPostprint (published version

    A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems

    Full text link
    We propose a set of compositional design patterns to describe a large variety of systems that combine statistical techniques from machine learning with symbolic techniques from knowledge representation. As in other areas of computer science (knowledge engineering, software engineering, ontology engineering, process mining and others), such design patterns help to systematize the literature, clarify which combinations of techniques serve which purposes, and encourage re-use of software components. We have validated our set of compositional design patterns against a large body of recent literature.Comment: 12 pages,55 reference

    Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order Terms

    Get PDF
    corecore