1,169 research outputs found

    Preservation of log-concavity on summation

    Get PDF
    We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of independent (not necessarily log-concave) random variables

    Interlacing Log-concavity of the Boros-Moll Polynomials

    Full text link
    We introduce the notion of interlacing log-concavity of a polynomial sequence {Pm(x)}m≥0\{P_m(x)\}_{m\geq 0}, where Pm(x)P_m(x) is a polynomial of degree m with positive coefficients ai(m)a_{i}(m). This sequence of polynomials is said to be interlacing log-concave if the ratios of consecutive coefficients of Pm(x)P_m(x) interlace the ratios of consecutive coefficients of Pm+1(x)P_{m+1}(x) for any m≥0m\geq 0. Interlacing log-concavity is stronger than the log-concavity. We show that the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a sufficient condition for interlacing log-concavity which implies that some classical combinatorial polynomials are interlacing log-concave.Comment: 10 page
    • …
    corecore