61 research outputs found

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Stepper microactuators driven by ultrasonic power transfer

    No full text
    Advances in miniature devices for biomedical applications are creating ever-increasing requirements for their continuous, long lasting, and reliable energy supply, particularly for implanted devices. As an alternative to bulky and cost inefficient batteries that require occasional recharging and replacement, energy harvesting and wireless power delivery are receiving increased attention. While the former is generally only suited for low-power diagnostic microdevices, the latter has greater potential to extend the functionality to include more energy demanding therapeutic actuation such as drug release, implant mechanical adjustment or microsurgery. This thesis presents a novel approach to delivering wireless power to remote medical microdevices with the aim of satisfying higher energy budgets required for therapeutic functions. The method is based on ultrasonic power delivery, the novelty being that actuation is powered by ultrasound directly rather than via piezoelectric conversion. The thesis describes a coupled mechanical system remotely excited by ultrasound and providing conversion of acoustic energy into motion of a MEMS mechanism using a receiving membrane coupled to a discrete oscillator. This motion is then converted into useful stepwise actuation through oblique mechanical impact. The problem of acoustic and mechanical impedance mismatch is addressed. Several analytical and numerical models of ultrasonic power delivery into the human body are developed. Major design challenges that have to be solved in order to obtain acceptable performance under specified operating conditions and with minimum wave reflections are discussed. A novel microfabrication process is described, and the resulting proof-of-concept devices are successfully characterized.Open Acces

    Doctor of Philosophy

    Get PDF
    dissertatio

    State-of-the-Art Developments of Acoustic Energy Transfer

    Get PDF
    Acoustic energy transfer (AET) technology has drawn significant industrial attention recently. This paper presents the reviews of the existing AETs sequentially, preferably, from the early stage. From the review, it is evident that, among all the classes of wireless energy transfer, AET is the safest technology to adopt. Thus, it is highly recommended for sensitive area and devices, especially implantable devices. Though, the efficiency for relatively long distances (i.e., >30 mm) is less than that of inductive or capacitive power transfer; however, the trade-off between safety considerations and performances is highly suitable and better than others. From the presented statistics, it is evident that AET is capable of transmitting 1.068 kW and 5.4 W of energy through wall and in-body medium (implants), respectively. Progressively, the AET efficiency can reach up to 88% in extension to 8.6 m separation distance which is even superior to that of inductive and capacitive power transfer

    Acoustic power distribution techniques for wireless sensor networks

    Get PDF
    Recent advancements in wireless power transfer technologies can solve several residual problems concerning the maintenance of wireless sensor networks. Among these, air-based acoustic systems are still less exploited, with considerable potential for powering sensor nodes. This thesis aims to understand the significant parameters for acoustic power transfer in air, comprehend the losses, and quantify the limitations in terms of distance, alignment, frequency, and power transfer efficiency. This research outlines the basic concepts and equations overlooking sound wave propagation, system losses, and safety regulations to understand the prospects and limitations of acoustic power transfer. First, a theoretical model was established to define the diffraction and attenuation losses in the system. Different off-the-shelf transducers were experimentally investigated, showing that the FUS-40E transducer is most appropriate for this work. Subsequently, different load-matching techniques are analysed to identify the optimum method to deliver power. The analytical results were experimentally validated, and complex impedance matching increased the bandwidth from 1.5 to 4 and the power transfer efficiency from 0.02% to 0.43%. Subsequently, a detailed 3D profiling of the acoustic system in the far-field region was provided, analysing the receiver sensitivity to disturbances in separation distance, receiver orientation and alignment. The measured effects of misalignment between the transducers are provided as a design graph, correlating the output power as a function of separation distance, offset, loading methods and operating frequency. Finally, a two-stage wireless power network is designed, where energy packets are inductively delivered to a cluster of nodes by a recharge vehicle and later acoustically distributed to devices within the cluster. A novel dynamic recharge scheduling algorithm that combines weighted genetic clustering with nearest neighbour search is developed to jointly minimise vehicle travel distance and power transfer losses. The efficacy and performance of the algorithm are evaluated in simulation using experimentally derived traces that presented 90% throughput for large, dense networks.Open Acces

    Mid-range transformer based wireless power transfer system for low power devices

    Get PDF
    Wireless power transfer technique for biomedical devices has drawn great interest from many researchers in the biomedical domain. Biomedical devices can be powered up either by an external power cord or by batteries. However an external power cord may limit the mobility of a patient and batteries tend to have a very limited power capacity and these methods may pose a high risk of infection towards the patient. Therefore, a wireless power transfer system is proposed to solve the problem. This study attempts to develop a mid-range transformer based wireless power transmission system which is suitable to power biomedical devices. This includes the develop of a transmitter circuit, receiver circuit, a pair of transmitter and receiver coils and transformers. This study demonstrates that magnetic coupling technique is a reliable wireless charging technique biomedical devices due to its mid-range transmission and satisfactory efficiency. In order to reduce power loss, an impedance matching method which incorporates a step-up and step-down transformers in the transmitter and receiver circuit is proposed. This study also develops a wireless power charging system that does not emit harmful radiation towards the human body. The frequency for the system is within the range of 700 kHz to 900 kHz which is in accordance to the ICNIRP regulation. Three pairs of round-shaped transmitter and receiver coils pair have been designed and fabricated with the diameter size of 30cm, 40cm, and 50cm. The power supply and frequency generator are connected to the transmitter circuit and an oscilloscope is connected to the load of the receiver circuit. The performance results are recorded using a range from 4 centimeters to 110 centimeters and based on the tabulated results, the mid-range wireless power transfer system managed to supply a transfer efficiency of 60% at a distance of 35cm for the 30cm diameter coil, 62% at a distance of 43cm for the 40cm diameter coil and 46% at a distance of 50cm for the 50cm diameter coil
    corecore