8,896 research outputs found

    Lightweight Formal Verification in Classroom Instruction of Reasoning about Functional Code

    Full text link
    In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader

    Process Realizability

    Full text link
    We develop a notion of realizability for Classical Linear Logic based on a concurrent process calculus.Comment: Appeared in Foundations of Secure Computation: Proceedings of the 1999 Marktoberdorf Summer School, F. L. Bauer and R. Steinbruggen, eds. (IOS Press) 2000, 167-18

    Formulas as Programs

    Get PDF
    We provide here a computational interpretation of first-order logic based on a constructive interpretation of satisfiability w.r.t. a fixed but arbitrary interpretation. In this approach the formulas themselves are programs. This contrasts with the so-called formulas as types approach in which the proofs of the formulas are typed terms that can be taken as programs. This view of computing is inspired by logic programming and constraint logic programming but differs from them in a number of crucial aspects. Formulas as programs is argued to yield a realistic approach to programming that has been realized in the implemented programming language ALMA-0 (Apt et al.) that combines the advantages of imperative and logic programming. The work here reported can also be used to reason about the correctness of non-recursive ALMA-0 programs that do not include destructive assignment.Comment: 34 pages, appears in: The Logic Programming Paradigm: a 25 Years Perspective, K.R. Apt, V. Marek, M. Truszczynski and D.S. Warren (eds), Springer-Verlag, Artificial Intelligence Serie
    • …
    corecore