40 research outputs found

    Inductive logic programming at 30: a new introduction

    Full text link
    Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.Comment: Paper under revie

    Logical Reduction of Metarules

    Get PDF
    International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollstĂ€ndig und enthalten auch ungĂŒltige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die ErklĂ€rbarkeit und VerstĂ€ndlichkeit von Wissensgraphinhalten fĂŒr Nutzer. In Anwendungen ist darĂŒber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen EntitĂ€ten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch fĂŒr tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz ĂŒber dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit ErklĂ€rungen fĂŒr Nutzer. Die Dissertation umfasst folgende BeitrĂ€ge: Insbesondere leistet die Dissertation folgende BeitrĂ€ge: ‱ Zur Wissensgraph-Erweiterung prĂ€sentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch HinzufĂŒgen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit LĂŒcken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche ErklĂ€rungen liefert. ‱ Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen ReprĂ€sentationen fĂŒr fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken fĂŒr die RegelqualitĂ€t verwendet. Experimente zeigen, dass RuLES die QualitĂ€t der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. ‱ Zur UnterstĂŒtzung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von ErklĂ€rungen fĂŒr Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen fĂŒr Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und QualitĂ€t der entdeckten ErklĂ€rungen deutlich verbessert. Die generierten unterstĂŒtzen ErklĂ€rungen unterstĂŒtze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. ‱ Zur UnterstĂŒtzung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen EntitĂ€ts-Clustern mit ErklĂ€rungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-ErklĂ€rung besteht aus einer Kombination von Relationen zwischen den EntitĂ€ten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- QualitĂ€t und die Cluster-ErklĂ€rbarkeit durch iteratives VerschrĂ€nken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher QualitĂ€t berechnet und dass die Cluster-ErklĂ€rungen fĂŒr Nutzer informativ sind

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    Inductive logic programming using bounded hypothesis space

    Get PDF
    Inductive Logic Programming (ILP) systems apply inductive learning to an inductive learning task by deriving a hypothesis which explains the given examples. Applying ILP systems to real applications poses many challenges as they require large search space, noise is present in the learning task, and in domains such as software engineering hypotheses are required to satisfy domain specific syntactic constraints. ILP systems use language biases to define the hypothesis space, and learning can be seen as a search within the defined hypothesis space. Past systems apply search heuristics to traverse across a large hypothesis space. This is unsuitable for systems implemented using Answer Set Programming (ASP), for which scalability is a constraint as the hypothesis space will need to be grounded by the ASP solver prior to solving the learning task, making them unable to solve large learning tasks. This work explores how to learn using bounded hypothesis spaces and iterative refinement. Hypotheses that explain all examples are learnt by refining smaller partial hypotheses. This improves the scalability of ASP based systems as the learning task is split into multiple smaller manageable refinement tasks. The thesis presents how syntactic integrity constraints on the hypothesis space can be used to strengthen hypothesis selection criteria, removing hypotheses with undesirable structure. The notion of constraint-driven bias is introduced, where hypotheses are required to be acceptable with respect to the given meta-level integrity constraints. Building upon the ILP system ASPAL, the system RASPAL which learns through iterative hypothesis refinement is implemented. RASPAL's algorithm is proven, under certain assumptions, to be complete and consistent. Both systems have been applied to a case study in learning user's behaviours from data collected from their mobile usage. This demonstrates their capability for learning with noise, and the difference in their efficiency. Constraint-driven bias has been implemented for both systems, and applied to a task in specification revision, and in learning stratified programs.Open Acces

    Adapting specifications for reactive controllers

    Get PDF
    For systems to respond to scenarios that were unforeseen at design time, they must be capable of safely adapting, at runtime, the assumptions they make about the environment, the goals they are expected to achieve, and the strategy that guarantees the goals are fulfilled if the assumptions hold. Such adaptation often involves the system degrading its functionality, by weakening its environment assumptions and/or the goals it aims to meet, ideally in a graceful manner. However, finding weaker assumptions that account for the unanticipated behaviour and of goals that are achievable in the new environment in a systematic and safe way remains an open challenge. In this paper, we propose a novel framework that supports assumption and, if necessary, goal degradation to allow systems to cope with runtime assumption violations. The framework, which integrates into the MORPH reference architecture, combines symbolic learning and reactive synthesis to compute implementable controllers that may be deployed safely. We describe and implement an algorithm that illustrates the working of this framework. We further demonstrate in our evaluation its effectiveness and applicability to a series of benchmarks from the literature. The results show that the algorithm successfully learns realizable specifications that accommodate previously violating environment behaviour in almost all cases. Exceptions are discussed in the evaluation

    TĂ€pne ja tĂ”hus protsessimudelite automaatne koostamine sĂŒndmuslogidest

    Get PDF
    Töötajate igapĂ€evatöö koosneb tegevustest, mille eesmĂ€rgiks on teenuste pakkumine vĂ”i toodete valmistamine. Selliste tegevuste terviklikku jada nimetatakse protsessiks. Protsessi kvaliteet ja efektiivsus mĂ”jutab otseselt kliendi kogemust – tema arvamust ja hinnangut teenusele vĂ”i tootele. Kliendi kogemus on eduka ettevĂ”tte arendamise oluline tegur, mis paneb ettevĂ”tteid jĂ€rjest rohkem pöörama tĂ€helepanu oma protsesside kirjeldamisele, analĂŒĂŒsimisele ja parendamisele. Protsesside kirjeldamisel kasutatakse tavaliselt visuaalseid vahendeid, sellisel kujul koostatud kirjeldust nimetatakse protsessimudeliks. Kuna mudeli koostaja ei suuda panna kirja kĂ”ike erandeid, mis vĂ”ivad reaalses protsessis esineda, siis ei ole need mudelid paljudel juhtudel terviklikud. Samuti on probleemiks suur töömaht - inimese ajakulu protsessimudeli koostamisel on suur. Protsessimudelite automaatne koostamine (protsessituvastus) vĂ”imaldab genereerida protsessimudeli toetudes tegevustega seotud andmetele. Protsessituvastus aitab meil vĂ€hendada protsessimudeli loomisele kuluvat aega ja samuti on tulemusena tekkiv mudel (vĂ”rreldes kĂ€sitsi tehtud mudeliga) kvaliteetsem. Protsessituvastuse tulemusel loodud mudeli kvaliteet sĂ”ltub nii algandmete kvaliteedist kui ka protsessituvastuse algoritmist. Antud doktoritöös anname ĂŒlevaate erinevatest protsessituvastuse algoritmidest. Toome vĂ€lja puudused ja pakume vĂ€lja uue algoritmi Split Miner. VĂ”rreldes olemasolevate algoritmidega on Splint Miner kiirem ja annab tulemuseks kvaliteetsema protsessimudeli. Samuti pakume vĂ€lja uue lĂ€henemise automaatselt koostatud protsessimudeli korrektsuse hindamiseks, mis on vĂ”rreldes olemasolevate meetoditega usaldusvÀÀrsem. Doktoritöö nĂ€itab, kuidas kasutada optimiseerimise algoritme protsessimudeli korrektsuse suurendamiseks.Everyday, companies’ employees perform activities with the goal of providing services (or products) to their customers. A sequence of such activities is known as business process. The quality and the efficiency of a business process directly influence the customer experience. In a competitive business environment, achieving a great customer experience is fundamental to be a successful company. For this reason, companies are interested in identifying their business processes to analyse and improve them. To analyse and improve a business process, it is generally useful to first write it down in the form of a graphical representation, namely a business process model. Drawing such process models manually is time-consuming because of the time it takes to collect detailed information about the execution of the process. Also, manually drawn process models are often incomplete because it is difficult to uncover every possible execution path in the process via manual data collection. Automated process discovery allows business analysts to exploit process' execution data to automatically discover process models. Discovering high-quality process models is extremely important to reduce the time spent enhancing them and to avoid mistakes during process analysis. The quality of an automatically discovered process model depends on both the input data and the automated process discovery application that is used. In this thesis, we provide an overview of the available algorithms to perform automated process discovery. We identify deficiencies in existing algorithms, and we propose a new algorithm, called Split Miner, which is faster and consistently discovers more accurate process models than existing algorithms. We also propose a new approach to measure the accuracy of automatically discovered process models in a fine-grained manner, and we use this new measurement approach to optimize the accuracy of automatically discovered process models.https://www.ester.ee/record=b530061
    corecore