35 research outputs found

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa

    Inductive logic programming at 30: a new introduction

    Full text link
    Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.Comment: Paper under revie

    Lifted relational neural networks: efficient learning of latent relational structures

    Get PDF
    We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Learning categorial grammars

    Get PDF
    In 1967 E. M. Gold published a paper in which the language classes from the Chomsky-hierarchy were analyzed in terms of learnability, in the technical sense of identification in the limit. His results were mostly negative, and perhaps because of this his work had little impact on linguistics. In the early eighties there was renewed interest in the paradigm, mainly because of work by Angluin and Wright. Around the same time, Arikawa and his co-workers refined the paradigm by applying it to so-called Elementary Formal Systems. By making use of this approach Takeshi Shinohara was able to come up with an impressive result; any class of context-sensitive grammars with a bound on its number of rules is learnable. Some linguistically motivated work on learnability also appeared from this point on, most notably Wexler & Culicover 1980 and Kanazawa 1994. The latter investigates the learnability of various classes of categorial grammar, inspired by work by Buszkowski and Penn, and raises some interesting questions. We follow up on this work by exploring complexity issues relevant to learning these classes, answering an open question from Kanazawa 1994, and applying the same kind of approach to obtain (non)learnable classes of Combinatory Categorial Grammars, Tree Adjoining Grammars, Minimalist grammars, Generalized Quantifiers, and some variants of Lambek Grammars. We also discuss work on learning tree languages and its application to learning Dependency Grammars. Our main conclusions are: - formal learning theory is relevant to linguistics, - identification in the limit is feasible for non-trivial classes, - the `Shinohara approach' -i.e., placing a numerical bound on the complexity of a grammar- can lead to a learnable class, but this completely depends on the specific nature of the formalism and the notion of complexity. We give examples of natural classes of commonly used linguistic formalisms that resist this kind of approach, - learning is hard work. Our results indicate that learning even `simple' classes of languages requires a lot of computational effort, - dealing with structure (derivation-, dependency-) languages instead of string languages offers a useful and promising approach to learnabilty in a linguistic contex

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore