271 research outputs found

    Inductive logic programming at 30: a new introduction

    Full text link
    Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.Comment: Paper under revie

    Incrementalizing Lattice-Based Program Analyses in Datalog

    Get PDF
    Program analyses detect errors in code, but when code changes frequently as in an IDE, repeated re-analysis from-scratch is unnecessary: It leads to poor performance unless we give up on precision and recall. Incremental program analysis promises to deliver fast feedback without giving up on precision or recall by deriving a new analysis result from the previous one. However, Datalog and other existing frameworks for incremental program analysis are limited in expressive power: They only support the powerset lattice as representation of analysis results, whereas many practically relevant analyses require custom lattices and aggregation over lattice values. To this end, we present a novel algorithm called DRedL that supports incremental maintenance of recursive lattice-value aggregation in Datalog. The key insight of DRedL is to dynamically recognize increasing replacements of old lattice values by new ones, which allows us to avoid the expensive deletion of the old value. We integrate DRedL into the analysis framework IncA and use IncA to realize incremental implementations of strong-update points-to analysis and string analysis for Java. As our performance evaluation demonstrates, both analyses react to code changes within milliseconds

    Equational and membership constraints for infinite trees

    Get PDF
    We present a new constraint system with equational and membership constraints over infinite trees. It provides for complete and correct satisfiability and entailment tests and ir therefore suitable for the use in concurrent constraint programming systems which are based on cyclic data structures. Our set defining devices are greatest fixpoint solutions of regular systems of equations with a deterministic form of union. As the main technical particularity of the algorithms we present a novel memorization technique. We believe that both satisfiability and entailment tests can be implemented in an efficient and incremental manner

    Incremental and Modular Context-sensitive Analysis

    Full text link
    Context-sensitive global analysis of large code bases can be expensive, which can make its use impractical during software development. However, there are many situations in which modifications are small and isolated within a few components, and it is desirable to reuse as much as possible previous analysis results. This has been achieved to date through incremental global analysis fixpoint algorithms that achieve cost reductions at fine levels of granularity, such as changes in program lines. However, these fine-grained techniques are not directly applicable to modular programs, nor are they designed to take advantage of modular structures. This paper describes, implements, and evaluates an algorithm that performs efficient context-sensitive analysis incrementally on modular partitions of programs. The experimental results show that the proposed modular algorithm shows significant improvements, in both time and memory consumption, when compared to existing non-modular, fine-grain incremental analysis techniques. Furthermore, thanks to the proposed inter-modular propagation of analysis information, our algorithm also outperforms traditional modular analysis even when analyzing from scratch.Comment: 56 pages, 27 figures. To be published in Theory and Practice of Logic Programming. v3 corresponds to the extended version of the ICLP2018 Technical Communication. v4 is the revised version submitted to Theory and Practice of Logic Programming. v5 (this one) is the final author version to be published in TPL

    A resolution principle for clauses with constraints

    Get PDF
    We introduce a general scheme for handling clauses whose variables are constrained by an underlying constraint theory. In general, constraints can be seen as quantifier restrictions as they filter out the values that can be assigned to the variables of a clause (or an arbitrary formulae with restricted universal or existential quantifier) in any of the models of the constraint theory. We present a resolution principle for clauses with constraints, where unification is replaced by testing constraints for satisfiability over the constraint theory. We show that this constrained resolution is sound and complete in that a set of clauses with constraints is unsatisfiable over the constraint theory if we can deduce a constrained empty clause for each model of the constraint theory, such that the empty clauses constraint is satisfiable in that model. We show also that we cannot require a better result in general, but we discuss certain tractable cases, where we need at most finitely many such empty clauses or even better only one of them as it is known in classical resolution, sorted resolution or resolution with theory unification
    corecore