8,010 research outputs found

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    The Audit Logic: Policy Compliance in Distributed Systems

    Get PDF
    We present a distributed framework where agents can share data along with usage policies. We use an expressive policy language including conditions, obligations and delegation. Our framework also supports the possibility to refine policies. Policies are not enforced a-priori. Instead policy compliance is checked using an a-posteriri auditing approach. Policy compliance is shown by a (logical) proof that the authority can systematically check for validity. Tools for automatically checking and generating proofs are also part of the framework.\u

    Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    Get PDF
    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed

    A Parameterised Hierarchy of Argumentation Semantics for Extended Logic Programming and its Application to the Well-founded Semantics

    Full text link
    Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning by viewing a proof as a process in which proponents and opponents attack each others arguments by undercuts (attack to an argument's premise) and rebuts (attack to an argument's conclusion). In this paper, we formulate a variety of notions of attack for extended logic programs from combinations of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by the notions of attack chosen by proponent and opponent. We prove the equivalence and subset relationships between the semantics and examine some essential properties concerning consistency and the coherence principle, which relates default negation and explicit negation. Most significantly, we place existing semantics put forward in the literature in our hierarchy and identify a particular argumentation semantics for which we prove equivalence to the paraconsistent well-founded semantics with explicit negation, WFSXp_p. Finally, we present a general proof theory, based on dialogue trees, and show that it is sound and complete with respect to the argumentation semantics.Comment: To appear in Theory and Practice of Logic Programmin

    Quasi-friendly sup-interpretations

    Get PDF
    In a previous paper, the sup-interpretation method was proposed as a new tool to control memory resources of first order functional programs with pattern matching by static analysis. Basically, a sup-interpretation provides an upper bound on the size of function outputs. In this former work, a criterion, which can be applied to terminating as well as non-terminating programs, was developed in order to bound polynomially the stack frame size. In this paper, we suggest a new criterion which captures more algorithms computing values polynomially bounded in the size of the inputs. Since this work is related to quasi-interpretations, we compare the two notions obtaining two main features. The first one is that, given a program, we have heuristics for finding a sup-interpretation when we consider polynomials of bounded degree. The other one consists in the characterizations of the set of function computable in polynomial time and in polynomial space
    corecore