67,922 research outputs found

    Recursive Definitions of Monadic Functions

    Full text link
    Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Minimal logic for computable functions

    Get PDF

    Hipster: Integrating Theory Exploration in a Proof Assistant

    Full text link
    This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes

    Theorem proving support in programming language semantics

    Get PDF
    We describe several views of the semantics of a simple programming language as formal documents in the calculus of inductive constructions that can be verified by the Coq proof system. Covered aspects are natural semantics, denotational semantics, axiomatic semantics, and abstract interpretation. Descriptions as recursive functions are also provided whenever suitable, thus yielding a a verification condition generator and a static analyser that can be run inside the theorem prover for use in reflective proofs. Extraction of an interpreter from the denotational semantics is also described. All different aspects are formally proved sound with respect to the natural semantics specification.Comment: Propos\'e pour publication dans l'ouvrage \`a la m\'emoire de Gilles Kah

    General Recursion via Coinductive Types

    Full text link
    A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiting coinductive types to model infinite computations. To every type A we associate a type of partial elements Partial(A), coinductively generated by two constructors: the first, return(a) just returns an element a:A; the second, step(x), adds a computation step to a recursive element x:Partial(A). We show how this simple device is sufficient to formalize all recursive functions between two given types. It allows the definition of fixed points of finitary, that is, continuous, operators. We will compare this approach to different ones from the literature. Finally, we mention that the formalization, with appropriate structural maps, defines a strong monad.Comment: 28 page

    Coinductive Formal Reasoning in Exact Real Arithmetic

    Full text link
    In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\"{o}bius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.Comment: 40 page

    Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic

    Get PDF
    We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result - which shows that the Excluded Middle principle can be used to eliminate Skolem functions - has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case.Comment: In Proceedings CL&C 2012, arXiv:1210.289
    • …
    corecore