13,456 research outputs found

    FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation

    Full text link
    We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.Comment: EMNLP 2018. The first four authors contribute equally. The order is determined by dice rolling. Visit our website http://zhuhao.me/fewre

    Learning to Learn to Disambiguate: Meta-Learning for Few-Shot Word Sense Disambiguation

    Get PDF
    The success of deep learning methods hinges on the availability of large training datasets annotated for the task of interest. In contrast to human intelligence, these methods lack versatility and struggle to learn and adapt quickly to new tasks, where labeled data is scarce. Meta-learning aims to solve this problem by training a model on a large number of few-shot tasks, with an objective to learn new tasks quickly from a small number of examples. In this paper, we propose a meta-learning framework for few-shot word sense disambiguation (WSD), where the goal is to learn to disambiguate unseen words from only a few labeled instances. Meta-learning approaches have so far been typically tested in an NN-way, KK-shot classification setting where each task has NN classes with KK examples per class. Owing to its nature, WSD deviates from this controlled setup and requires the models to handle a large number of highly unbalanced classes. We extend several popular meta-learning approaches to this scenario, and analyze their strengths and weaknesses in this new challenging setting.Comment: Added additional experiment

    MICK: A Meta-Learning Framework for Few-shot Relation Classification with Small Training Data

    Full text link
    Few-shot relation classification seeks to classify incoming query instances after meeting only few support instances. This ability is gained by training with large amount of in-domain annotated data. In this paper, we tackle an even harder problem by further limiting the amount of data available at training time. We propose a few-shot learning framework for relation classification, which is particularly powerful when the training data is very small. In this framework, models not only strive to classify query instances, but also seek underlying knowledge about the support instances to obtain better instance representations. The framework also includes a method for aggregating cross-domain knowledge into models by open-source task enrichment. Additionally, we construct a brand new dataset: the TinyRel-CM dataset, a few-shot relation classification dataset in health domain with purposely small training data and challenging relation classes. Experimental results demonstrate that our framework brings performance gains for most underlying classification models, outperforms the state-of-the-art results given small training data, and achieves competitive results with sufficiently large training data
    • …
    corecore