1,048 research outputs found

    An investigation into current and vibration signatures of three phase induction motors

    Get PDF
    This research aimed at investigating the relationship between three phase induction motors vibration (MVS) and current signatures (MCS). This is essential due to the cost of vibration measuring equipment and in cases where vibration of interest point is not accessible; such as electrical submersible pumps (ESP) used in oil industry. A mathematical model was developed to understand the effects of two types of induction motors common faults; rotor bar imperfections and phase imbalance on the motor vibration and current signatures. An automated test facility was developed in which 1.1 kW three phase motor could be tested under varying shaft rotation speeds and loads for validating the developed model. Time and frequency domains statistical parameters of the measured signals were calculated for fault detection and assessing its severity. The measured signals were also processed using the short time Fourier transform (STFT), the Wigner-Ville distribution (WVD), the continuous wavelet transform (CWT) and discrete wavelet transform (DWT) and wavelet multi-resolution analysis (MRA). The non-stationary components, representing faults within induction motor measured vibration and current signals, were successfully detected using wavelet decomposition technique. An effective alternative to direct vibration measurement scheme, based on radial basis function networks, was developed to the reconstruction of motor vibration using measurements of one phase of the motor current. It was found that this method captured the features of induction motor faults with reasonable degrees of accuracy. Another method was also developed for the early detection and diagnosis of faults using an enhanced power factor method. Experimental results confirmed that the power factor can be used successfully for induction motor fault diagnosis and is also promising in assessing fault severity. The suggested two methods offer inexpensive, reliable and non-intrusive condition monitoring tools that suits real-time applications. Directions for further work were also outlined

    A Robust Technique for Detection, Diagnosis, and Localization of Switching Faults in Electric Drives Using Discrete Wavelet Transform

    Get PDF
    Detection, diagnosis, and localization of switching faults in electric drives are extremely important for operating a large number of induction motors in parallel. This study aims to present the design and development of switching fault detection, diagnosis, and localization strategy for the induction motor drive system (IMDS) by using a novel diagnostic variable that is derived from discrete wavelet transform (DWT) coefficients. The distinctiveness of the proposed algorithm is that it can identify single/multiple switch open and short faults and locate the defective switches using a single mathematical computation. The proposed algorithm is tested by simulation in MATLAB/Simulink and experimentally validated using the LabVIEW hardware-in-the-loop platform. The results demonstrate the robustness and effectiveness of the proposed technique in identifying and locating faults

    Detection and Classification of Stator Short-Circuit Faults in Three-Phase Induction Motor

    Get PDF
    Induction motors are the backbone of the industries because they are easy to operate, rugged, economical and reliable. However, they are subjected to stator’s faults which damage the windings and consequently lead to machine failure and loss of revenue. Early detection and  classification of these faults are important for the effective operation of induction motors. Stators faults detection and classification based on  wavelet Transform was carried out in this study. The feature extraction of the acquired data was achieved using lifting decomposition and reconstruction scheme while Euclidean distance of the Wavelet energy was used to classify the faults. The Wavelet energies increased for all three conditions monitored, normal condition, inter-turn fault and phase-to-phase fault, as the frequency band of the signal decreases from D1 to A3. The deviations in the Euclidean Distance of the current of the Wavelet energy obtained for the phase-to-phase faults are 99.1909, 99.8239 and 87.9750 for phases A and B, A and C, B and C respectively. While that of the inter-turn faults in phases A, B and C are 77.5572, 61.6389 and 62.5581 respectively. Based on the Euclidean distances of the faults, Df and normal current signals, three classification points were set: K1 = 0.60 x 102, K2 = 0.80 x 102 and K3 = 1.00 x 102. For K2 ≥ Df ≥ K1 inter-turn faults is identified and for K3 ≥ Df ≥ K2 phase to phase fault identified. This will improve the induction motors stator’s fault diagnosis. Keywords: induction motor, stator fault classification, data acquisition system, Discrete Wavelet Transfor

    Wavelet Fault Diagnosis of Induction Motor

    Get PDF

    Wavelet-Based Analysis of MCSA for Fault Detection in Electrical Machine

    Get PDF
    Early detection of irregularity in electrical machines is important because of their diversity of use in different fields. A proper fault detection scheme helps to stop the propagation of failure or limits its escalation to severe degrees, and thus it prevents unscheduled downtimes that cause loss of production and financial income. Among different modes of failures that may occur in the electrical machines, the rotor-related faults are around 20%. Successful detection of any failure in electrical machines is achieved by using a suitable condition monitoring followed by accurate signal processing techniques to extract the fault features. This article aims to present the extraction of features appearing in current signals using wavelet analysis when there is a rotor fault of eccentricity and broken rotor bar. In this respect, a brief explanation on rotor failures and different methods of condition monitoring with the purpose of rotor fault detection is provided. Then, motor current signature analysis, the fault-related features appeared in the current spectrum and wavelet transform analyses of the signal to extract these features are explained. Finally, two case studies involving the wavelet analysis of the current signal for the detection of rotor eccentricity and broken rotor bar are presented
    corecore