509 research outputs found

    Automatic generation of named entity taggers leveraging parallel corpora

    Get PDF
    The lack of hand curated data is a major impediment to developing statistical semantic processors for many of the world languages. A major issue of semantic processors in Nat- ural Language Processing (NLP) is that they require manually annotated data to perform accurately. Our work aims to address this issue by leveraging existing annotations and semantic processors from multiple source languages by projecting their annotations via statistical word alignments traditionally used in Machine Translation. Taking the Named Entity Recognition (NER) task as a use case of semantic processing, this work presents a method to automatically induce Named Entity taggers using parallel data, without any manual intervention. Our method leverages existing semantic processors and annotations to overcome the lack of annotation data for a given language. The intuition is to transfer or project semantic annotations, from multiple sources to a target language, by statistical word alignment methods applied to parallel texts (Och and Ney, 2000; Liang et al., 2006). The projected annotations can then be used to automatically generate semantic processors for the target language. In this way we would be able to provide NLP processors with- out training data for the target language. The experiments are focused on 4 languages: German, English, Spanish and Italian, and our empirical evaluation results show that our method obtains competitive results when compared with models trained on gold-standard out-of-domain data. This shows that our projection algorithm is effective to transport NER annotations across languages via parallel data thus providing a fully automatic method to obtain NER taggers for as many as the number of languages aligned via parallel corpora

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Building Multilingual Named Entity Annotated Corpora Exploiting Parallel Corpora

    Get PDF
    Proceedings of the Workshop on Annotation and Exploitation of Parallel Corpora AEPC 2010. Editors: Lars Ahrenberg, Jörg Tiedemann and Martin Volk. NEALT Proceedings Series, Vol. 10 (2010), 24-33. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15893

    Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure

    Get PDF
    It has been established that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of linguistic structure. While previous work has focused primarily on English, we extend these results to other languages along two dimensions. First, we show that these results hold true for a number of languages across families. Second, and more interestingly, we provide an algorithm for inducing cross-lingual clusters and we show that features derived from these clusters significantly improve the accuracy of cross-lingual structure prediction. Specifically, we show that by augmenting direct-transfer systems with cross-lingual cluster features, the relative error of delexicalized dependency parsers, trained on English treebanks and transferred to foreign languages, can be reduced by up to 13%. When applying the same method to direct transfer of named-entity recognizers, we observe relative improvements of up to 26%
    corecore