1,937 research outputs found

    Paired and induced-paired domination in (E,net)-free graphs

    Get PDF
    A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by attaching a pendant vertex to each vertex of the path on three vertices) as induced subgraphs. This graph class is a natural generalization of (claw,net)-free graphs, which are intensively studied with respect to their nice properties concerning domination and hamiltonicity. We show that any connected (E,net)-free graph has a paired-dominating set that, roughly, contains at most half of the vertices of the graph. This bound is a significant improvement to the known general bounds. Further, we show that any (E,net, C_5 )-free graph has an induced paired-dominating set, that is a paired-dominating set that forms an induced matching, and that such set can be chosen to be a minimum paired-dominating sets. We use these results to obtain a new characterization of (E,net, C_5 )-free graphs in terms of the hereditary existence of induced paired-dominating sets. Finally, we show that the induced matching formed by an induced paired-dominating set in a (E,net, C_5 )-free graph can be chosen to have at most two times the size of the smallest maximal induced matching possible

    On graphs for which the connected domination number is at most the total domination number. Discrete

    Get PDF
    Abstract In this note we give a finite forbidden subgraph characterization of the connected graphs for which any non-trivial connected induced subgraph has the property that the connected domination number is at most the total domination number. This question is motivated by the fact that any connected dominating set of size at least 2 is in particular a total dominating set. It turns out that in this characterization, the total domination number can equivalently be substituted by the upper total domination number, the paired-domination number and the upper paired-domination number respectively. Another equivalent condition is given in terms of structural domination

    Paired-Domination Game Played in Graphs\u3csup\u3e∗\u3c/sup\u3e

    Get PDF
    In this paper, we continue the study of the domination game in graphs introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979-991]. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph G by two players, named Dominator and Pairer. They alternately take turns choosing vertices of G such that each vertex chosen by Dominator dominates at least one vertex not dominated by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not previously chosen that is a neighbor of the vertex played by Dominator on his previous move. This process eventually produces a paired-dominating set of vertices of G; that is, a dominating set in G that induces a subgraph that contains a perfect matching. Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to maximize it. The game paired-domination number γgpr(G) of G is the number of vertices chosen when Dominator starts the game and both players play optimally. Let G be a graph on n vertices with minimum degree at least 2. We show that γgpr(G) ≤ 45 n, and this bound is tight. Further we show that if G is (C4, C5)-free, then γgpr(G) ≤ 43 n, where a graph is (C4, C5)-free if it has no induced 4-cycle or 5-cycle. If G is 2-connected and bipartite or if G is 2-connected and the sum of every two adjacent vertices in G is at least 5, then we show that γgpr(G) ≤ 34 n
    • …
    corecore