59,392 research outputs found

    Learning Markov Decision Processes for Model Checking

    Full text link
    Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation is performed by analyzing the probabilistic linear temporal logic properties of the system as well as by analyzing the schedulers, in particular the optimal schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345

    Query Learning with Exponential Query Costs

    Full text link
    In query learning, the goal is to identify an unknown object while minimizing the number of "yes" or "no" questions (queries) posed about that object. A well-studied algorithm for query learning is known as generalized binary search (GBS). We show that GBS is a greedy algorithm to optimize the expected number of queries needed to identify the unknown object. We also generalize GBS in two ways. First, we consider the case where the cost of querying grows exponentially in the number of queries and the goal is to minimize the expected exponential cost. Then, we consider the case where the objects are partitioned into groups, and the objective is to identify only the group to which the object belongs. We derive algorithms to address these issues in a common, information-theoretic framework. In particular, we present an exact formula for the objective function in each case involving Shannon or Renyi entropy, and develop a greedy algorithm for minimizing it. Our algorithms are demonstrated on two applications of query learning, active learning and emergency response.Comment: 15 page

    Resolution Trees with Lemmas: Resolution Refinements that Characterize DLL Algorithms with Clause Learning

    Full text link
    Resolution refinements called w-resolution trees with lemmas (WRTL) and with input lemmas (WRTI) are introduced. Dag-like resolution is equivalent to both WRTL and WRTI when there is no regularity condition. For regular proofs, an exponential separation between regular dag-like resolution and both regular WRTL and regular WRTI is given. It is proved that DLL proof search algorithms that use clause learning based on unit propagation can be polynomially simulated by regular WRTI. More generally, non-greedy DLL algorithms with learning by unit propagation are equivalent to regular WRTI. A general form of clause learning, called DLL-Learn, is defined that is equivalent to regular WRTL. A variable extension method is used to give simulations of resolution by regular WRTI, using a simplified form of proof trace extensions. DLL-Learn and non-greedy DLL algorithms with learning by unit propagation can use variable extensions to simulate general resolution without doing restarts. Finally, an exponential lower bound for WRTL where the lemmas are restricted to short clauses is shown
    corecore