88,678 research outputs found

    Proper connection number of graphs

    Get PDF
    The concept of \emph{proper connection number} of graphs is an extension of proper colouring and is motivated by rainbow connection number of graphs. Let GG be an edge-coloured graph. Andrews et al.\cite{Andrews2016} and, independently, Borozan et al.\cite{Borozan2012} introduced the concept of proper connection number as follows: A coloured path PP in an edge-coloured graph GG is called a \emph{properly coloured path} or more simple \emph{proper path} if two any consecutive edges receive different colours. An edge-coloured graph GG is called a \emph{properly connected graph} if every pair of vertices is connected by a proper path. The \emph{proper connection number}, denoted by pc(G)pc(G), of a connected graph GG is the smallest number of colours that are needed in order to make GG properly connected. Let k2k\geq2 be an integer. If every two vertices of an edge-coloured graph GG are connected by at least kk proper paths, then GG is said to be a \emph{properly kk-connected graph}. The \emph{proper kk-connection number} pck(G)pc_k(G), introduced by Borozan et al. \cite{Borozan2012}, is the smallest number of colours that are needed in order to make GG a properly kk-connected graph. The aims of this dissertation are to study the proper connection number and the proper 2-connection number of several classes of connected graphs. All the main results are contained in Chapter 4, Chapter 5 and Chapter 6. Since every 2-connected graph has proper connection number at most 3 by Borozan et al. \cite{Borozan2012} and the proper connection number of a connected graph GG equals 1 if and only if GG is a complete graph by the authors in \cite{Andrews2016, Borozan2012}, our motivation is to characterize 2-connected graphs which have proper connection number 2. First of all, we disprove Conjecture 3 in \cite{Borozan2012} by constructing classes of 2-connected graphs with minimum degree δ(G)3\delta(G)\geq3 that have proper connection number 3. Furthermore, we study sufficient conditions in terms of the ratio between the minimum degree and the order of a 2-connected graph GG implying that GG has proper connection number 2. These results are presented in Chapter 4 of the dissertation. In Chapter 5, we study proper connection number at most 2 of connected graphs in the terms of connectivity and forbidden induced subgraphs Si,j,kS_{i,j,k}, where i,j,ki,j,k are three integers and 0ijk0\leq i\leq j\leq k (where Si,j,kS_{i,j,k} is the graph consisting of three paths with i,ji,j and kk edges having an end-vertex in common). Recently, there are not so many results on the proper kk-connection number pck(G)pc_k(G), where k2k\geq2 is an integer. Hence, in Chapter 6, we consider the proper 2-connection number of several classes of connected graphs. We prove a new upper bound for pc2(G)pc_2(G) and determine several classes of connected graphs satisfying pc2(G)=2pc_2(G)=2. Among these are all graphs satisfying the Chv\'{a}tal and Erd\'{o}s condition (α(G)κ(G)\alpha({G})\leq\kappa(G) with two exceptions). We also study the relationship between proper 2-connection number pc2(G)pc_2(G) and proper connection number pc(G)pc(G) of the Cartesian product of two nontrivial connected graphs. In the last chapter of the dissertation, we propose some open problems of the proper connection number and the proper 2-connection number

    Graph Partitioning With Input Restrictions

    Get PDF
    In this thesis we study the computational complexity of a number of graph partitioning problems under a variety of input restrictions. Predominantly, we research problems related to Colouring in the case where the input is limited to hereditary graph classes, graphs of bounded diameter or some combination of the two. In Chapter 2 we demonstrate the dramatic eect that restricting our input to hereditary graph classes can have on the complexity of a decision problem. To do this, we show extreme jumps in the complexity of three problems related to graph colouring between the class of all graphs and every other hereditary graph class. We then consider the problems Colouring and k-Colouring for Hfree graphs of bounded diameter in Chapter 3. A graph class is said to be H-free for some graph H if it contains no induced subgraph isomorphic to H. Similarly, G is said to be H-free for some set of graphs H, if it does not contain any graph in H as an induced subgraph. Here, the set H consists usually of a single cycle or tree but may also contain a number of cycles, for example we give results for graphs of bounded diameter and girth. Chapter 4 is dedicated to three variants of the Colouring problem, Acyclic Colouring, Star Colouring, and Injective Colouring. We give complete or almost complete dichotomies for each of these decision problems restricted to H-free graphs. In Chapter 5 we study these problems, along with three further variants of 3-Colouring, Independent Odd Cycle Transversal, Independent Feedback Vertex Set and Near-Bipartiteness, for H-free graphs of bounded diameter. Finally, Chapter 6 deals with a dierent variety of problems. We study the problems Disjoint Paths and Disjoint Connected Subgraphs for H-free graphs

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio
    corecore