1,471 research outputs found

    Between proper and strong edge-colorings of subcubic graphs

    Full text link
    In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where edges of some colors are allowed to form matchings, and the remaining form induced matchings. Our research is motivated by the conjecture proposed in a recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75) asserting that by allowing three additional induced matchings, one is able to save one matching color. We prove that every graph with maximum degree 3 can be decomposed into one matching and at most 8 induced matchings, and two matchings and at most 5 induced matchings. We also show that if a graph is in class I, the number of induced matchings can be decreased by one, hence confirming the above-mentioned conjecture for class I graphs

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Perfect Matchings in Claw-free Cubic Graphs

    Full text link
    Lovasz and Plummer conjectured that there exists a fixed positive constant c such that every cubic n-vertex graph with no cutedge has at least 2^(cn) perfect matchings. Their conjecture has been verified for bipartite graphs by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove that every claw-free cubic n-vertex graph with no cutedge has more than 2^(n/12) perfect matchings, thus verifying the conjecture for claw-free graphs.Comment: 6 pages, 2 figure

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Petersen cores and the oddness of cubic graphs

    Full text link
    Let GG be a bridgeless cubic graph. Consider a list of kk 1-factors of GG. Let EiE_i be the set of edges contained in precisely ii members of the kk 1-factors. Let μk(G)\mu_k(G) be the smallest E0|E_0| over all lists of kk 1-factors of GG. If GG is not 3-edge-colorable, then μ3(G)3\mu_3(G) \geq 3. In [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206] it is shown that if μ3(G)0\mu_3(G) \not = 0, then 2μ3(G)2 \mu_3(G) is an upper bound for the girth of GG. We show that μ3(G)\mu_3(G) bounds the oddness ω(G)\omega(G) of GG as well. We prove that ω(G)23μ3(G)\omega(G)\leq \frac{2}{3}\mu_3(G). If μ3(G)=23μ3(G)\mu_3(G) = \frac{2}{3} \mu_3(G), then every μ3(G)\mu_3(G)-core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4-edge-connected cubic graph GG with ω(G)=23μ3(G)\omega(G) = \frac{2}{3}\mu_3(G). On the other hand, the difference between ω(G)\omega(G) and 23μ3(G)\frac{2}{3}\mu_3(G) can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer k3k\geq 3, there exists a bridgeless cubic graph GG such that μ3(G)=k\mu_3(G)=k.Comment: 13 pages, 9 figure
    corecore