153 research outputs found

    Colouring versus density in integers and Hales-Jewett cubes

    Full text link
    We construct for every integer k3k\geq 3 and every real μ(0,k1k)\mu\in(0, \frac{k-1}{k}) a set of integers X=X(k,μ)X=X(k, \mu) which, when coloured with finitely many colours, contains a monochromatic kk-term arithmetic progression, whilst every finite YXY\subseteq X has a subset ZYZ\subseteq Y of size ZμY|Z|\geq \mu |Y| that is free of arithmetic progressions of length kk. This answers a question of Erd\H{o}s, Ne\v{s}et\v{r}il, and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales-Jewett version of this result.Comment: 5 figure

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Ramseyova teorie a kombinatorické hry

    Get PDF
    Ramsey theory studies the internal homogenity of mathematical structures (graphs, number sets), parts of which (subgraphs, number subsets) are arbitrarily coloured. Often, the sufficient object size implies the existence of a monochromatic sub-object. Combinatorial games are 2-player games of skill with perfect information. The theory of combinatorial games studies mostly the questions of existence of winning or drawing strategies. Let us consider an object that is studied by a particular Ramsey-type theorem. Assume two players alternately colour parts of this object by two colours and their goal is to create certain monochromatic sub-object. Then this is a combinatorial game. We focus on the minimum object size such that the appropriate Ramsey-type theorem holds, called Ramsey number, and on the minimum object size such that the rst player has a winning strategy in the corresponding combinatorial game, called game number. In this thesis, we describe such Ramsey-type theorems where the Ramsey number is substantially greater than the game number. This means, we show the existence of rst player's winning strategies, zogether with Ramsey and game numbers upper bounds, and we compare both numbers.Ramseyova teorie studuje vnitřní homogenitu matematických struktur (grafů, číselných oborů), jejichž části (podgrafy, podmnožiny) jsou libovolně obarveny. Často platí, že je-li studovaný objekt dostatečně velký, lze v něm najít určitý jednobarevný podobjekt. Kombinatorické hry jsou hry dvou hráčů s plnou informací, kde záleží pouze na jejich inteligenci. Teorie kombinatorických her studuje především otázky existence vyhrávajících či neprohrávajících strategií. Vezmeme-li ramseyovskou větu a necháme-li objekt, který tato věta studuje, střídavě barvit dvěma hráči, jejichž cílem je vytvořit určitý monochromatický podobjekt, dostaneme kombinatorickou hru. Předmětem našeho zájmu je jednak nejmenší velikost objektu, při které platí ramseyovská věta, tzv. ramseyovské číslo, a jednak nejmeněí velikost téhož objektu, při které má první hráč vyhrávající strategii v příslušné kombinatorické hře, tzv. herní číslo. V této práci popisujeme takové ramseyovské věty, u nichž je ramseyovské číslo podstatně větší než číslo herní. To znamená, že podáváme důkazy existence vyhrávajících strategií prvního hráče spolu s horními odhady na ramseyovská a herní čísla a obě čísla porovnáváme.Katedra aplikované matematikyDepartment of Applied MathematicsMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Ramsey theorem for trees with successor operation

    Full text link
    We prove a general Ramsey theorem for trees with a successor operation. This theorem is a common generalization of the Carlson-Simpson Theorem and the Milliken Tree Theorem for regularly branching trees. Our theorem has a number of applications both in finite and infinite combinatorics. For example, we give a short proof of the unrestricted Ne\v{s}et\v{r}il-R\"odl theorem, and we recover the Graham-Rothschild theorem. Our original motivation came from the study of big Ramsey degrees - various trees used in the study can be viewed as trees with a successor operation. To illustrate this, we give a non-forcing proof of a theorem of Zucker on big Ramsey degrees.Comment: 37 pages, 9 figure

    Ergodic theorems for polynomials in nilpotent groups

    Get PDF
    The principal results proved in this expository thesis are the IP polynomial Szemer\'edi theorem for nilpotent groups and the multiple term return times theorem with nilsequence weights. It also contains extensions of the convergence theorem for nilpotent polynomial multiple ergodic averages and the return times theorem to locally compact second countable amenable groups.Comment: PhD thesis, University of Amsterdam, xi+146 pages. Based on arXiv:1111.7292, arXiv:1206.0287, arXiv:1208.3977, arXiv:1210.5202, arXiv:1301.188

    Recent developments in graph Ramsey theory

    Get PDF
    Given a graph H, the Ramsey number r(H) is the smallest natural number N such that any two-colouring of the edges of K_N contains a monochromatic copy of H. The existence of these numbers has been known since 1930 but their quantitative behaviour is still not well understood. Even so, there has been a great deal of recent progress on the study of Ramsey numbers and their variants, spurred on by the many advances across extremal combinatorics. In this survey, we will describe some of this progress
    corecore