2,656 research outputs found

    Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs *

    Get PDF
    Abstract Given two graphs G and H as input, the Induced Subgraph Isomorphism (ISI) problem is to decide whether G has an induced subgraph that is isomorphic to H. This problem is NP-complete already when G and H are restricted to disjoint unions of paths, and consequently also NP-complete on proper interval graphs and on bipartite permutation graphs. We show that ISI can be solved in polynomial time on proper interval graphs and on bipartite permutation graphs, provided that H is connected. As a consequence, we obtain that ISI is fixed-parameter tractable on these two graph classes, when parametrised by the number of connected components of H. Our results contrast and complement the following known results: W [1]-hardness of ISI on interval graphs when parametrised by the number of vertices of H, NP-completeness of ISI on connected interval graphs and on connected permutation graphs, and NP-completeness of Subgraph Isomorphism on connected proper interval graphs and connected bipartite permutation graphs

    Graph Isomorphism for unit square graphs

    Get PDF
    In the past decades for more and more graph classes the Graph Isomorphism Problem was shown to be solvable in polynomial time. An interesting family of graph classes arises from intersection graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not rely on standard techniques for geometric graphs based on constructing a canonical realization. Instead, we develop new techniques which combine structural insights into the class of unit square graphs with understanding of the automorphism group of such graphs. For the latter we introduce a generalization of bounded degree graphs which is used to capture the main structure of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve the isomorphism problem for unit square graphs.Comment: 31 pages, 6 figure

    Modular Decomposition and the Reconstruction Conjecture

    Get PDF
    We prove that a large family of graphs which are decomposable with respect to the modular decomposition can be reconstructed from their collection of vertex-deleted subgraphs.Comment: 9 pages, 2 figure

    Combinatorial Problems on HH-graphs

    Full text link
    Bir\'{o}, Hujter, and Tuza introduced the concept of HH-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph HH. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. We continue the study of these graph classes by considering coloring, clique, and isomorphism problems on HH-graphs. We show that for any fixed HH containing a certain 3-node, 6-edge multigraph as a minor that the clique problem is APX-hard on HH-graphs and the isomorphism problem is isomorphism-complete. We also provide positive results on HH-graphs. Namely, when HH is a cactus the clique problem can be solved in polynomial time. Also, when a graph GG has a Helly HH-representation, the clique problem can be solved in polynomial time. Finally, we observe that one can use treewidth techniques to show that both the kk-clique and list kk-coloring problems are FPT on HH-graphs. These FPT results apply more generally to treewidth-bounded graph classes where treewidth is bounded by a function of the clique number
    • …
    corecore