27 research outputs found

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Multi-Finger Haptic Devices Integrating Miniature Short-Stroke Actuators

    Get PDF
    The omnipresence of electronic devices in our everyday life goes together with a trend that makes us always more immersed during their utilization. By immersion, we mean that during the development of a new product, it is more and more required to stimulate several senses of the user so as to make the product more attractive. The sense of touch does not escape the rule and is more and more considered. Definitely democratized by its integration in smart phones with touchscreens, the haptic feedback allows enhancing the human-machine interactions in many ways. For instance by improving the comfort of use of a button through the modification of its force feedback. It can also offer an interactive experience during the manipulation of digital information and even improve the communication, particularly through the internet and for blind people, with the introduction of non-verbal signals. For these reasons, the present thesis focuses on the conception of multi-finger haptic devices, a new kind of peripherals integrating multiple actuators and capable of providing a fully programmable force feedback to the user's fingers. A global methodology is presented, outlining the different constituents necessary for their conception: actuator, sensor, control, communication and software user interface. Then, generic tools corresponding to the two first elements are presented. An accurate modeling of miniature electromagnetic short-stroke actuators is made possible thanks to the combination of 3D finite element modeling (FEM) and design of experiments (DOE). The non-usual behavior of magnetic flux lines in miniature actuators with relatively large airgaps imposes to avoid simplified analytical models and to use the reliable results of finite elements. The long computation times required by 3D FEM are balanced by the use of selective DOE making the modeling methodology easily adaptable, rapid and accurate. The parametrical model of the force provided by the modeling methodology is then integrated in a full parametrical setup allowing for the optimization of the actuator force using a conventional algorithm. The advantage of the parametrical optimization is that complementary non-linear constraints such as weight and temperature can be added, making the model multi-physic. Then, several original position measurement techniques using existing sensors are developed including a low-cost custom single-photointerrupter sensor allowing for direction discrimination for fast-prototyping and a hybrid sensing method using tiny Hall sensors and taking advantage of the leaks of the main actuator magnet. Two innovative self-sensing methods are then presented, allowing for the measurement of the mover position of linear short-stroke actuators. The first solution estimates the position of the coil by measuring the acceleration through the back emf. However in this case, a constant acceleration is required, which strongly restrains the application scope. The second solution allows for a real-time measurement of the position thanks to a passive oscillating RLC circuit influenced by the variation of the coil impedance. All the solutions presented are low-cost, compact and require few computation resources. Finally, in order to illustrate the methodology proposed along the thesis, several prototypes are fabricated, giving an overview of the possibilities offered by multi-finger haptic devices. A haptic numeric pad is notably used in an experiment made in collaboration with the University Service of Child and Adolescent Psychiatry in Lausanne with the aim of improving the impaired emotional processing of psychotic adolescents. Moreover, the successful identification of several touch sensations on the same haptic pad lays the first stones of a new tactile language

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF

    Pan European Voice Conference - PEVOC 11

    Get PDF
    The Pan European VOice Conference (PEVOC) was born in 1995 and therefore in 2015 it celebrates the 20th anniversary of its establishment: an important milestone that clearly expresses the strength and interest of the scientific community for the topics of this conference. The most significant themes of PEVOC are singing pedagogy and art, but also occupational voice disorders, neurology, rehabilitation, image and video analysis. PEVOC takes place in different European cities every two years (www.pevoc.org). The PEVOC 11 conference includes a symposium of the Collegium Medicorum Theatri (www.comet collegium.com

    Understanding Acoustics

    Get PDF
    This open access textbook, like Rayleigh’s classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features “Talk Like an Acoustician“ boxes to highlight key terms introduced in the text
    corecore