4,715 research outputs found

    High frequency oscillations as a correlate of visual perception

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in International journal of psychophysiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International journal of psychophysiology , 79, 1, (2011) DOI 10.1016/j.ijpsycho.2010.07.004Peer reviewedPostprin

    Early and late effects of objecthood and spatial frequency on event-related potentials and gamma band activity

    Get PDF
    Background: The visual system may process spatial frequency information in a low-to-high, coarse-to-fine sequence. In particular, low and high spatial frequency information may be processed via different pathways during object recognition, with LSF information projected rapidly to frontal areas and HSF processed later in visual ventral areas. In an electroencephalographic study, we examined the time course of information processing for images filtered to contain different ranges of spatial frequencies. Participants viewed either high spatial frequency (HSF), low spatial frequency (LSF), or unfiltered, broadband (BB) images of objects or non-object textures, classifying them as showing either man-made or natural objects, or non-objects. Event-related potentials (ERPs) and evoked and total gamma band activity (eGBA and tGBA) recorded using the electroencephalogram were compared for object and non-object images across the different spatial frequency ranges. Results: The visual P1 showed independent modulations by object and spatial frequency, while for the N1 these factors interacted. The P1 showed more positive amplitudes for objects than non-objects, and more positive amplitudes for BB than for HSF images, which in turn evoked more positive amplitudes than LSF images. The peak-to-peak N1 showed that the N1 was much reduced for BB non-objects relative to all other images, while HSF and LSF non-objects still elicited as negative an N1 as objects. In contrast, eGBA was influenced by spatial frequency and not objecthood, while tGBA showed a stronger response to objects than non-objects. Conclusions: Different pathways are involved in the processing of low and high spatial frequencies during object recognition, as reflected in interactions between objecthood and spatial frequency in the visual N1 component. Total gamma band seems to be related to a late, probably high-level representational process

    PRIMING OF OBJECT CATEGORIZATION WITHIN AND ACROSS LEVELS OF SPECIFICITY

    Get PDF
    Identification of objects can occur at different levels of specificity. Dependingon task and context, an object can be classified at the superordinate level (as ananimal), at the basic level (a bird) or at the subordinate level (a sparrow). Whatare the interactions between these representational levels and do they rely onthe same sequential processes that lead to successful object identification? Inthis electroencephalogram study, a task-switching paradigm (covert naming orliving/non-living judgment) was used. Images of objects were repeated eitherwithin the same task, or with a switch from a covert naming task to a livingor non-living judgment and vice versa. While covert naming accesses entrylevel(basic or subordinate), living/non-living judgments rely on superordinateclassification. Our beha-vioural results demonstrated clear priming effectswithin both tasks. However, asymmetries were found when task-switching hadoccurred, with facilitation for covert naming but not for categorization. Wealso found lower accuracy and early-starting and persistent enhancements ofevent-related potentials (ERPs) for covert naming, indicating that this task wasmore difficult and involved more intense perceptual and semantic processing.Perceptual priming was marked by consistent reductions of the ERP componentL1 for repeated presentations, both with and without task switching. Additionalrepetition effects were found in early event-related activity between 150-190 ms(N1) when a repeated image had been named at initial presentation. We conclude that differences in N1 indicate task-related changes in the identification processitself. Such enhancements for covert naming again emerge in a later timewindow associated with depth of semantic processing. Meanwhile, L1 reflectsmodulations due to implicit memory of objects. In conclusion, evidence wasfound for representational overlap; changes in ERP markers started early andrevealed cross-task priming at the level of object structure analysis and moreintense perceptual and semantic processing for covert naming

    Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception

    Get PDF
    Neurophysiological evidence suggests that face and object recognition relies on the coordinated activity of neural populations (i.e., neural oscillations) in the gamma-band range (> 30 Hz) over the occipito-temporal cortex. To test the causal effect of gamma-band oscillations on face and object perception we applied transcranial Alternating Current Stimulation (tACS) in healthy volunteers (N = 60). In this single-blind, sham-controlled study, we examined whether the administration of offline tACS at gamma-frequency (40 Hz) over the right occipital cortex enhances performance of perception and memory of face and object stimuli. We hypothesized that gamma tACS would enhance the perception of both categories of visual stimuli. Results, in line with our hypothesis, show that 40 Hz tACS enhanced both face and object perception. This effect is process-specific (i.e., it does not affect memory), frequency-specific (i.e., stimulation at 5 Hz did not cause any behavioural change), and site-specific (i.e., stimulation of the sensory-motor cortex did not affect performance). Our findings show that high-frequency tACS modulates human visual perception, and it is in line with neurophysiological studies showing that the perception of visual stimuli (i.e., faces and objects) is mediated by oscillations in the gamma-band range. Furthermore, this study adds insight about the design of effective neuromodulation protocols that might have implications for interventions in clinical settings

    Directed Cortical Information Flow during Human Object Recognition: Analyzing Induced EEG Gamma-Band Responses in Brain's Source Space

    Get PDF
    The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz) elicited by familiar (meaningful) objects is well established in electroencephalogram (EEG) research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC) using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar object processing. In contrast, unfamiliar objects entailed a sparse number of only unidirectional connections converging to parietal areas. Considering the directionality of brain interactions, the current results might indicate that successful activation of object representations is realized through reciprocal (feed-forward and feed-backward) information-transfer of oscillatory connections between distant, functionally specific brain areas

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore