108 research outputs found

    Performance Analysis of Indoor THz Communications with One-Bit Precoding

    Get PDF
    In this paper, the performance of indoor Terahertz (THz) communication systems with one-bit digital-to- analog converters (DACs) is investigated. Array-of- subarrays architecture is assumed for the antennas at the access points, where each RF chain uniquely activates a disjoint subset of antennas, each of which is connected to an exclusive phase shifter. Hybrid precoding, including maximum ratio transmission (MRT) and zero-forcing (ZF) precoding, is considered. The best beamsteering direction for the phase shifter in the large subarray antenna regime is first proved to be the direction of the line-of-sight (LoS) path. Subsequently, the closed-form expression of the lower- bound of the achievable rate in the large subarray antenna regime is derived, which is the same for both MRT and ZF and is independent of the transmit power. Numerical results validating the analysis are provided as well

    System-level assessment of low complexity hybrid precoding designs for massive MIMO downlink transmissions in beyond 5G networks

    Get PDF
    The fast growth experienced by the telecommunications field during the last few decades has been motivating the academy and the industry to invest in the design, testing and deployment of new evolutions of wireless communication systems. Terahertz (THz) communication represents one of the possible technologies to explore in order to achieve the desired achievable rates above 100 Gbps and the extremely low latency required in many envisioned applications. Despite the potentialities, it requires proper system design, since working in the THz band brings a set of challenges, such as the reflection and scattering losses through the transmission path, the high dependency with distance and the severe hardware constraints. One key approach for overcoming some of these challenges relies on the use of massive/ultramassive antenna arrays combined with hybrid precoders based on fully connected phase-shifter architectures or partially connected architectures, such as arrays of subarrays (AoSAs) or dynamic AoSAs (DAoSAs). Through this strategy, it is possible to obtain very high-performance gains while drastically simplifying the practical implementation and reducing the overall power consumption of the system when compared to a fully digital approach. Although these types of solutions have been previously proposed to address some of the limitations of mmWave/THz communications, a lack between link-level and system-level analysis is commonly verified. In this paper, we present a thorough system-level assessment of a cloud radio access network (C-RAN) for beyond 5G (B5G) systems where the access points (APs) operate in the mmWave/THz bands, supporting multi-user MIMO (MU-MIMO) transmission with massive/ultra-massive antenna arrays combined with low-complexity hybrid precoding architectures. Results showed that the C-RAN deployments in two indoor office scenarios for the THz were capable of achieving good throughput and coverage performances, with only a small compromise in terms of gains when adopting reduced complexity hybrid precoders. Furthermore, we observed that the indoor-mixed office scenario can provide higher throughput and coverage performances independently of the cluster size when compared to the indoor-open office scenario.info:eu-repo/semantics/publishedVersio

    Reconfigurable Intelligent Surfaces based system design for future 6G wireless networks

    Get PDF
    Future sixth generation (6G) wireless networks perceive the THz band as essential to support the high volume of wireless traffic data being generated in the network, thus enabling ultra high transmission rates. However, the behaviour of the THz frequency spectrum affects the propagation occurring in the wireless communication system due to high attenuation, leading to severe propagation losses. Reconfigurable intelligent surfaces (RIS) are a promising technology to overcome the limitations present in the THz waveband by reshaping the wave direction, thus enabling the signal to propagate towards its intended target. RIS have many applications in wireless systems, specifically in the optimization of the communication network performance when combined with ultra-massive multiple-input multiple-output antennas (UM-MIMO). UMMIMO systems are critical for implementing THz frequencies as the large number of antennas provides high directivity pencil like beams, thereby enabling easy data spread from the transmitter towards the receiver. To achieve low complexity whilst deploying UM-MIMO systems, hybrid precoders must be implemented. This dissertation aims to design and evaluate a RIS-assisted communication model for ultra-massive MIMO systems to extend coverage range and to improve the energy and spectral efficiency of 6G communications. To maximize the achievable rate of the structure, an algorithm will be developed to calculate the phase shifts of the individual RIS elements, and the implementation of various hybrid precoding structures. Several numerical results will be obtained through various simulations and analysed to give insight into which design is best suited for RIS-assisted THz communication system through the achievable rates obtained.As futuras redes sem fios da sexta geração (6G) consideram a frequência Terahertz fundamental para suportar o elevado número de tráfego gerado na rede, permitindo assim elevadas taxas de transmissão de dados. Todavia, o comportamento do espectro de frequências THz condiciona a propagação que ocorre no sistema de comunicação pela sua elevada atenuação, originando graves perdas de propagação. Superfícies inteligentes reconfiguráveis (RIS) são uma tecnologia promissora para ultrapassar as limitações existentes na faixa dos THz ao moldarem a direção da onda, permitindo que o sinal se propague para o destinatário. Os RIS dispõem de inúmeras aplicações nos sistemas sem fios, especificamente na otimização do desempenho da rede de comunicações ao utilizarem antenas ultra massivas de múltipla entradas e saídas. Os sistemas UM-MIMO são fundamentais para implementar frequências THz pelo elevado número de antenas, facilitando a propagação de dados desde o emissor e recetor. A fim de alcançar uma complexidade reduzida nos sistemas UM-MIMO, é necessário implementar pré-codificadores híbridos. Esta dissertação pretende conceber um sistema de comunicação para redes sem fios ultra massivo MIMO assistido por RIS para melhorar a eficiência energética das comunicações 6G e do espectro e o alcance da cobertura. De modo a maximizar a taxa alcançável do modelo, será desenvolvido um algoritmo para calcular a quantização das mudanças de fase dos elementos RIS sendo implementado várias estruturas híbridas de pré-codificação. Os resultados numéricos serão analisados a fim de revelar qual a configuração ideal para o sistema de comunicação THz assistido por RIS mediante as taxas alcançáveis obtidas

    Design of terahertz transceiver schemes for ultrahigh-speed wireless communications

    Get PDF
    Future ultra-high-speed wireless communication systems face difficult challenges due to the fundamental limitations of current technologies operating at microwave frequencies. Supporting high transmission rates will require the use of more spectral resources that are only available at higher frequencies. Within this context, terahertz (THz) communications have been attracting more and more attention, being considered by the research community as one of the most promising research fields on the topic due to the availability of extensive unused bandwidth segments. However, its widespread use is not yet possible due to some obstacles, such as the high propagation losses that occur in this band and the difficulty in designing devices that can effectively perform both transmission and detection tasks. The purpose of this dissertation is to contribute for the solution of both of the aforementioned problems and to propose novel THz transceiver schemes for ultra-high-speed wireless communications. Three main research areas were addressed: device modelling for the THz; index modulation (IM) based schemes for Beyond 5G (B5G) networks and hybrid precoding designs for THz ultra massive (UM) – multiple input multiple output (MIMO) systems. The main contributions of this work include the creation of a new design for a reconfigurable THz filter; the proposal of a precoded generalized spatial modulation scheme for downlink MIMO transmissions in B5G networks; the creation of a low-complexity hybrid design algorithm with a near fully-digital performance for multiuser (MU) mmWave/THz ultra massive MIMO systems that can incorporate different analog architectures; and the system-level assessment of cloud radio access network (C-RAN) deployments based on low-complexity hybrid precoding designs for massive MIMO downlink transmissions in B5G networks. The first contribution is especially suited for the implementation of reconfigurable THz filters and optical modulators, since it is based on a simple design, which transits from situations in which it presents a full transparency to situations where it achieves full opacity. Moreover, this approach can also be used for the implementation of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RIS) which are important for enabling flexible system designs in RIS-assisted networks. The second contribution showed that the implementation of precoding schemes based on generalised spatial modulations is a solution with a considerable potential for future B5G systems, since it can provide larger throughputs when compared to conventional MU-MIMO schemes with identical spectral efficiencies.The last two contributions showed that through the proposed hybrid design algorithm it becomes possible to replace a fully digital precoder/combiner by a fully-connected or even by a partially-connected architecture (array of subarrays and dynamic array of subarrays), while achieving good tradeoffs between spectral efficiency, power consumption and implementation complexity. These proposals are particularly relevant for the support of UM-MIMO in severely hardware constrained THz systems. Moreover, the capability of achieving significant improvements in terms of throughput performance and coverage over typical cellular networks, when considering hybrid precoding‐based C-RAN deployments in two indoor office scenarios at the THz band, was demonstrated.Os futuros sistemas de comunicação sem fios de velocidade ultra-elevada enfrentam desafios difíceis devido às limitações fundamentais das tecnologias atuais que funcionam a frequências de microondas. O suporte de taxas de transmissão altas exigirá a utilização de mais recursos espectrais que só estão disponíveis em frequências mais elevadas. A banda Terahertz (THz) é uma das soluções mais promissoras devido às suas enormes larguras de banda disponíveis no espectro eletromagnético. No entanto, a sua utilização generalizada ainda não é possível devido a alguns obstáculos, tais como as elevadas perdas de propagação que se verificam nesta banda e a dificuldade em conceber dispositivos que possam desempenhar eficazmente as tarefas de transmissão e deteção. O objetivo desta tese de doutoramento, é contribuir para ambos os problemas mencionados anteriormente e propor novos esquemas de transcetores THz para comunicações sem fios de velocidade ultra-elevada. Três grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: a modelação do dispositivo para o THz; esquemas baseados em modulações de índice (IM) para redes pós-5G (B5G) e desenhos de pré-codificadores híbridos para sistemas THz MIMO ultra-massivos. As principais contribuições deste trabalho incluem a criação de um novo design para um filtro THz reconfigurável; a proposta de uma nova tipologia de modulação espacial generalizada pré-codificada para transmissões MIMO de ligação descendente para redes B5G; a criação de um algoritmo de design híbrido de baixa complexidade com desempenho quase totalmente digital para sistemas MIMO multi-utilizador (MU) mmWave/THz ultra massivos que podem incorporar diferentes arquiteturas analógicas e a avaliação das implementações da rede de acesso de rádio na nuvem (C-RAN) com base em designs de pré-codificação híbridos de baixa complexidade para transmissões MIMO de ligação descendente massivas em redes B5G. A primeira contribuição é especialmente adequada para a implementação de filtros THz reconfiguráveis e moduladores óticos, uma vez que se baseia numa concepção mais simples, que transita de situações em que apresenta uma transparência total para situações em que atinge uma opacidade total. Para além disso, esta abordagem também pode ser utilizada para a implementação de superfícies inteligentes reconfiguráveis (RIS) de transmissão e reflexão simultânea (STAR). A segunda contribuição mostrou que a implementação de esquemas de pré-codificação baseados em modulações espaciais generalizadas é uma solução com um potencial considerável para futuros sistemas B5G, uma vez que permite alcançar maiores ganhos em termos de débito binário quando comparado com esquemas convencionais MU-MIMO com eficiências espectrais idênticas. As duas últimas contribuições mostraram que através do algoritmo proposto torna-se possível substituir a utilização de uma arquitectura totalmente digital por uma arquitetura totalmente conectada ou mesmo por uma arquitetura parcialmente conectada (arrays de subarrays e arrays dinâmicos de subarrays), conseguindo-se bons tradeoffs entre eficiência espectral, consumo de energia e complexidade de implementação. Estas propostas são particularmente relevantes para dar suporte a sistemas THz UM-MIMO com restrições severas ao nível de hardware. Demonstrou-se também a capacidade de se alcançar melhorias significativas em termos de débito binário e cobertura em relação a redes celulares típicas, considerando dois cenários na banda THz

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure
    corecore