7 research outputs found

    A review of RFID based solutions for indoor localization and location-based classification of tags

    Get PDF
    Wireless communication systems are very used for indoor localization of items. In particular, two main application field can be identified. The former relates to detection or localization of static items. The latter relates to real-time tracking of moving objects, whose movements can be reconstructed over identified timespans. Among the adopted technologies, Radio-Frequency IDentification (RFID), especially if based on cheap passive RFID tags, stands out for its affordability and reasonable efficiency. This aspect makes RFID suitable for both the above-mentioned applications, especially when a large number of objects need to be tagged. The reason lies in a suitable trade-off between low cost for implementing the position sensing system, and its precision and accuracy. However, RFID-based solutions suffer for limited reading range and lower accuracy. Solutions have been proposed by academia and industry. However, a structured analysis of developed solutions, useful for further implementations, is missing. The purpose of this paper is to highlight and review the recently proposed solutions for indoor localization making use of RFID passive tags. The paper focuses on both precise and qualitative location of objects. The form relates to (i) the correct position of tags, namely mapping their right position in a 2D or 3D environment. The latter relates to the classification of tags, namely the identification of the area where the tag is regardless its specific position

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM

    Advancing the objective measurement of physical activity and sedentary behaviour context

    Get PDF
    Objective data from national surveillance programmes show that, on average, individuals accumulate high amounts of sedentary time per day and only a small minority of adults achieve physical activity guidelines. One potential explanation for the failure of interventions to increase population levels of physical activity or decrease sedentary time is that research to date has been unable to identify the specific behavioural levers in specific contexts needed to change behaviour. Novel technology is emerging with the potential to elucidate these specific behavioural contexts and thus identify these specific behavioural levers. Therefore the aims of this four study thesis were to identify novel technologies capable of measuring the behavioural context, to evaluate and validate the most promising technology and to then pilot this technology to assess the behavioural context of older adults, shown by surveillance programmes to be the least physically active and most sedentary age group. Study one Purpose: To identify, via a systematic review, technologies which have been used or could be used to measure the location of physical activity or sedentary behaviour. Methods: Four electronic databases were searched using key terms built around behaviour, technology and location. To be eligible for inclusion papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed from the inception of the database up to 04/02/2015. Searches were also performed using three internet search engines. Specialised software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras and Radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems and 21 wearable cameras. Conclusion: The addition of location information to existing measures of physical activity and sedentary behaviour will provide important behavioural information. Study Two Purpose: This study investigated the Actigraph proximity feature across three experiments. The aim of Experiment One was to assess the basic characteristics of the Actigraph RSSI signal across a range of straight line distances. Experiment Two aimed to assess the level of receiver device signal detection in a single room under unobstructed conditions, when various obstructions are introduced and the impacts these obstructions have on the intra and inter unit variability of the RSSI signal. Finally, Experiment Three aimed to assess signal contamination across multiple rooms (i.e. one beacon being detected in multiple rooms). Methods: Across all experiments, the receiver(s) collected data at 10 second epochs, the highest resolution possible. In Experiment One two devices, one receiver and one beacon, were placed opposite each other at 10cm increments for one minute at each distance. The RSSI-distance relationship was then visually assessed for linearity. In Experiment Two, a test room was demarcated into 0.5 x 0.5 m grids with receivers simultaneously placed in each demarcated grid. This process was then repeated under wood, metal and human obstruction conditions. Descriptive tallies were used to assess the signal detection achieved for each receiver from each beacon in each grid. Mean RSSI signal was calculated for each condition alongside intra and inter-unit standard deviation, coefficient of variation and standard error of the measurement. In Experiment Three, a test apartment was used with three beacons placed across two rooms. The researcher then completed simulated conditions for 10 minutes each across the two rooms. The percentage of epochs where a signal was detected from each of the three beacons across each test condition was then calculated. Results: In Experiment One, the relationship between RSSI and distance was found to be non-linear. In Experiment Two, high signal detection was achieved in all conditions; however, there was a large degree of intra and inter-unit variability in RSSI. In Experiment Three, there was a large degree of multi-room signal contamination. Conclusion: The Actigraph proximity feature can provide a binary indicator of room level location. Study Three Purpose: To use novel technology in three small feasibility trials to ascertain where the greatest utility can be demonstrated. Methods: Feasibility Trial One assessed the concurrent validity of electrical energy monitoring and wearable cameras as measures of television viewing. Feasibility Trial Two utilised indoor location monitoring to assess where older adult care home residents accumulate their sedentary time. Lastly, Feasibility Trial Three investigated the use of proximity sensors to quantify exposure to a height adjustable desk Results: Feasibility Trial One found that on average the television is switched on for 202 minutes per day but is visible in just 90 minutes of wearable camera images with a further 52 minutes where the participant is in their living room but the television is not visible in the image. Feasibility Trial Two found that residents were highly sedentary (sitting for an average of 720 minutes per day) and spent the majority of their time in their own rooms with more time spent in communal areas in the morning than in the afternoon. Feasibility Trial Three found a discrepancy between self-reported work hours and objectively measured office dwell time. Conclusion: The feasibility trials outlined in this study show the utility of objectively measuring context to provide more detailed and refined data. Study Four Purpose: To objectively measure the context of sedentary behaviour in the most sedentary age group, older adults. Methods: 26 residents and 13 staff were recruited from two care homes. Each participant wore an Actigraph GT9X on their non-dominant wrist and a LumoBack posture sensor on their lower back for one week. The Actigraph recorded proximity every 10 seconds and acceleration at 100 Hz. LumoBack data were provided as summaries per 5 minutes. Beacon Actigraphs were placed around each care home in the resident s rooms, communal areas and corridors. Proximity and posture data were combined in 5 minute epochs with descriptive analysis of average time spent sitting in each area produced. Acceleration data were summarised into 10 second epochs and combined with proximity data to show the average count per epoch in each area of the care home. Mann-Whitney tests were performed to test for differences between care homes. Results: No significant differences were found between Care Home One and Care Home Two in the amount of time spent sitting in communal areas of the care home (301 minutes per day and 39 minutes per day respectively, U=23, p=0.057) or in the amount of time residents spent sitting in their own room (215 minutes per day and 337 minutes per day in Care Home One and Two respectively, U=32, p=0.238). In both care homes, accelerometer measured average movement increases with the number of residents in the communal area. Conclusion: The Actigraph proximity system was able to quantify the context of sedentary behaviour in older adults. This enabled the identification of levers for behaviour change which can be used to reduce sedentary time in this group. Overall conclusion: There are a large number of technologies available with the potential to measure the context of physical activity or sedentary time. The Actigraph proximity feature is one such technology. This technology is able to provide a binary measure of proximity via the detection or non-detection of Bluetooth signal: however, the variability of the signal prohibits distance estimation. The Actigraph proximity feature, in combination with a posture sensor, is able to elucidate the context of physical activity and sedentary time

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials

    No full text
    corecore