680 research outputs found

    Indoor localization based on hybrid Wi-Fi hotspots

    Get PDF
    Most existing indoor localization algorithms basedon Wi-Fi signals mainly rely on wireless access points (APs), i.e. hotspots, with fixed deployment, which are easily affected by the non-line of sight (NLOS) factors and the multipath effect. There also exist many other problems, such as positioning stability and blind spots, which can cause decline in positioning accuracy at certain positions, or even failure of positioning. However, it will increase the hardware cost by adding more static APs; if the localization mechanism integrates different wireless signals is adopted, it tends to cause high cost of positioning and long complex positioning process, etc. In this paper, we proposed a novel hybrid Wi-Fi access point-based localization algorithm (HAPLA), which utilizes the received signal strength indications(RSSI) from static APs and dynamic APs to determine location scenes. It flexibly selects available AP signals and dynamically switches the positioning methods, thus to achieve efficient positioning. HAPLA only relies on the Wi-Fi signal strength values, which can reduce the cost of hardware and the complexity of localization system. The proposed method can also be able to effectively prevent interference from different signal sources. Inour test scenario, we deployed typical indoor scenes with the NLOS factors and the multipath effect for experiments. The experiments demonstrate the effectiveness of proposed method and the results show that, compared with the classic K nearest neighbor-based location algorithm (KNN) and the variance-based fingerprint distance adjustment algorithm (VFDA), HAPLA has better adaptability and higher positioning accuracy, and can effectively solve the problem of positioning blind spots

    A Localization System for Optimizing the Deployment of Small Cells in 2-Tier Heterogeneous Wireless Networks

    Get PDF
    Due to the ever growing population of mobile device users and expansion on the number of devices and applications requiring data usage, there is an increasing demand for improved capacity in wireless cellular networks. Cell densification and 2-tier heterogeneous networks (HetNets) are two solutions which will assist 5G systems in meeting these growing capacity demands. Small-cell deployment over existing heterogeneous networks have been considered by researchers. Different strategies for deploying these small-cells within the existing network among which are random, cell-edge and high user concentration (HUC) have also been explored. Small cells deployed on locations of HUC offloads traffic from existing network infrastructure, ensure good Quality of Service (QoS) and balanced load in the network but there is a challenge of identifying HUC locations. There has been considerable research performed into techniques for determining user location and cell deployment. Currently localization can be achieved using time dependent methods such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Global Positioning Systems (GPS). GPS based solutions provide high accuracy user positioning but suffer from concerns over user privacy, and other time dependent approaches require regular synchronization which can be difficult to achieve in practice. Alternatively, Received Signal Strength (RSS) based solutions can provide simple anonymous user data, requiring no extra hardware within the mobile handset but often rely on triangulation from adjacent Base Stations (BS). In mobile cellular networks such solutions are therefore often only applicable near the cell edge, as installing additional BS would increase the complexity and cost of a network deployment. The work presented in this thesis overcomes these limitations by providing an observer system for wireless networks that can be used to periodically monitor the cell coverage area and identify regions of high concentrations of users for possible small cell deployment in 2-tier heterogeneous networks. The observer system comprises of two collinear antennas separated by λ/2. The relative phase of each antenna was varied using a phase shifter so that the combined output of the two antennas were used to create sum and difference radiation patterns, and to steer the antenna radiation pattern creating different azimuth positions for AoA estimation. Statistical regression analysis was used to develop range estimation models based on four different environment empirical pathloss models for user range estimation. Users were located into clusters by classifying them into azimuth-range classes and counting the number of users in each class. Locations for small cell deployment were identified based on class population. BPEM, ADEM, BUEM, EARM and NLOS models were developed for more accurate range estimation. A prototype system was implemented and tested both outdoor and indoor using a network of WiFi nodes. Experimental results show close relationship with simulation and an average PER in range estimation error of 80% by applying developed error models. Based on both simulation and experiment, system showed good performance. By deploying micro-, pico-, or femto-cells in areas of higher user concentration, high data rates and good quality of service in the network can be maintained. The observer system provides the network manager with relative angle of arrival (AoA), distance estimation and relative location of user clusters within the cell. The observer system divides the cell into a series of azimuthal and range sectors, and determines which sector the users are located in. Simulation and a prototype design of the system is presented and results have shown system robustness and high accuracy for its purpose

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A realistic evaluation of indoor positioning systems based on Wi-Fi fingerprinting: The 2015 EvAAL–ETRI competition

    Get PDF
    Pre-print versionThis paper presents results from comparing different Wi-Fi fingerprinting algorithms on the same private dataset. The algorithms where realized by independent teams in the frame of the off-site track of the EvAAL-ETRI Indoor Localization Competition which was part of the Sixth International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015). Competitors designed and validated their algorithms against the publicly available UJIIndoorLoc database which contains a huge reference- and validation data set. All competing systems were evaluated using the mean error in positioning, with penalties, using a private test dataset. The authors believe that this is the first work in which Wi-Fi fingerprinting algorithm results delivered by several independent and competing teams are fairly compared under the same evaluation conditions. The analysis also comprises a combined approach: Results indicate that the competing systems where complementary, since an ensemble that combines three competing methods reported the overall best results.We would like to thank Francesco Potortì, Paolo Barsocchi, Michele Girolami and Kyle O’Keefe for their valuable help in organizing and spread the EVAALETRI competition and the off-site track. We would also like to thank the TPC members Machaj Juraj, Christos Laoudias, Antoni Pérez-Navarro and Robert Piché for their valuable comments, suggestions and reviews. Parts of this work were funded in the frame of the Spanish Ministry of Economy and Competitiveness through the “Metodologiías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” project (Proyectos I+D Excelencia, código TIN2015-70202-P) and the “Red de Posicionamiento y Navegación en Interiores” network (Redes de Excelencia, código TEC2015-71426- REDT). Parts of this work were funded in the frame of the German federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT).info:eu-repo/semantics/acceptedVersio

    A survey of fuzzy logic in wireless localization

    Get PDF

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end
    corecore