1,055 research outputs found

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146

    Google earth forensics on IOS 10’s location service

    Get PDF
    The easy access and common usage of GNSS systems has provided a wealth of evidential information that may be accessed by a digital forensic investigator. Google Earth is commonly used on all manner of devices for geolocation services and consequently has a wide range of tools that will relate real time and stored GNSS data to maps. As an aid to investigation Google Earth forensics is available for use. An investigator can use it by downloading geolocation data from devices and placing it on Google Earth maps, place geolocation data on historical archival maps, or by direct usage of the application in a device. In this paper we review the Google Earth forensics tool and use a simplistic scenario to demonstrate the power of the application for courtroom walk-throughs. The entry-level tool is free and can be used effectively to enhance the presentation of geolocation data

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    A CRIS Data Science Investigation of Scientific Workflows of Agriculture Big Data and its Data Curation Elements

    Get PDF
    This joint collaboration between the Purdue Libraries and Cyber Center demonstrates the next generation of computational platforms supporting interdisciplinary collaborative research. Such platforms are necessary for rapid advancements of technology, industry demand and scholarly congruence towards open data, open access, big data and cyber-infrastructure data science training. Our approach will utilize a Discovery Undergraduate Research Investigation effort as a preliminary research means to further joint library and computer science data curation research, tool development and refinement

    Autonomous Indoor Localization via Field Mapping Techniques, with Agricultural Big Data Application

    Get PDF
    This joint collaboration between the library, the Mechanical Engineering department shows the current research of localizing an Android smartphone using big data collection and sensor fusion techniques. The original work is Autonomous Indoor Localization via Field Mapping Techniques which primarily designed as indoor fire and safety aid. For Agricultural Big Data Use, the Android smartphone is being applied to in indoor greenhouse fire, safety and data knowledge design. Such may aid big data tool value to greenhouse fire and safety design and any data that may be important fieldwork considerations. The indoor agricultural mapping application may be application to greenhouses in indoor growing labs that promote educational and resource management capacity.For Big Data management we intend to utilize the CRIS (Figure 1) scientific workflow system and Purdue ionomic information management systems designed by Benjamin Branch, Peter Baker, Jia Xu, Elisa Bertino

    A multimodal Fingerprint-based Indoor Positioning System for airports

    Full text link
    [EN] Indoor Localization techniques are becoming popular in order to provide a seamless indoor positioning system enhancing the traditional GPS service that is only suitable for outdoor environments. Though there are proprietary and costly approaches targeting high accuracy positioning, Wi-Fi and BLE networks are widely deployed in many public and private buildings (e.g. shopping malls, airports, universities, etc.). These networks are accessible through mobile phones resulting in an effective commercial off-the-self basic infrastructure for an indoor service. The obtained positioning accuracy is still being improved and there is on-going research on algorithms adapted for Wi-Fi and BLE and also for the particularities of indoor environments. This paper focuses not only on indoor positioning techniques, but also on a multimodal approach. Traditional proposals employ only one network technology whereas this paper integrates two different technologies in order to provide improved accuracy. It also sets the basis for combining (merging) additional technologies, if available. The initial results show that the positioning service performs better with a multimodal approach compared to individual (monomodal) approaches and even compared with GoogleÂżs geolocation service in public spaces such as airports.This work was supported in part by the European Commission through the Door to Door Information for Airports and Airlines Project under Grant GA 635885 and in part by the European Commission through the Interoperability of Heterogeneous IoT Platforms Project under Grant 687283.Molina Moreno, B.; Olivares-Gorriti, E.; Palau Salvador, CE.; Esteve Domingo, M. (2018). A multimodal Fingerprint-based Indoor Positioning System for airports. IEEE Access. 6:10092-10106. https://doi.org/10.1109/ACCESS.2018.2798918S1009210106

    Analysis and evaluation of Wi-Fi indoor positioning systems using smartphones

    Get PDF
    This paper attempts to analyze the main algorithms used in Machine Learning applied to the indoor location. New technologies are facing new challenges. Satellite positioning has become a typical application of mobile phones, but stops working satisfactorily in enclosed spaces. Currently there is a problem in positioning which is unresolved. This circumstance motivates the research of new methods. After the introduction, the first chapter presents current methods of positioning and the problem of positioning indoors. This part of the work shows globally the current state of the art. It mentions a taxonomy that helps classify the different types of indoor positioning and a selection of current commercial solutions. The second chapter is more focused on the algorithms that will be analyzed. It explains how the most widely used of Machine Learning algorithms work. The aim of this section is to present mathematical algorithms theoretically. These algorithms were not designed for indoor location but can be used for countless solutions. In the third chapter, we learn gives tools work: Weka and Python. the results obtained after thousands of executions with different algorithms and parameters showing main problems of Machine Learning shown. In the fourth chapter the results are collected and the conclusions drawn are shown

    PINSPOT: An oPen platform for INtelligent context-baSed Indoor POsiTioning

    Get PDF
    This work proposes PINSPOT; an open-access platform for collecting and sharing of context, algorithms and results in the cutting-edge area of indoor positioning. It is envisioned that this framework will become reference point for knowledge exchange which will bring the research community even closer and potentially enhance collaboration towards more effective and efficient creation of indoor positioning-related knowledge and innovation. Specifically, this platform facilitates the collection of sensor data useful for indoor positioning experimentation, the development of novel, self-learning, indoor positioning algorithms, as well as the enhancement and testing of existing ones and the dissemination and sharing of the proposed algorithms along with their configuration, the data used, and with their results

    Multisensor navigation systems: a remedy for GNSS vulnerabilities?

    Get PDF
    Space-based positioning, navigation, and timing (PNT) technologies, such as the global navigation satellite systems (GNSS) provide position, velocity, and timing information to an unlimited number of users around the world. In recent years, PNT information has become increasingly critical to the security, safety, and prosperity of the World's population, and is now widely recognized as an essential element of the global information infrastructure. Due to its vulnerabilities and line-of-sight requirements, GNSS alone is unable to provide PNT with the required levels of integrity, accuracy, continuity, and reliability. A multisensor navigation approach offers an effective augmentation in GNSS-challenged environments that holds a promise of delivering robust and resilient PNT. Traditionally, sensors such as inertial measurement units (IMUs), barometers, magnetometers, odometers, and digital compasses, have been used. However, recent trends have largely focused on image-based, terrain-based and collaborative navigation to recover the user location. This paper offers a review of the technological advances that have taken place in PNT over the last two decades, and discusses various hybridizations of multisensory systems, building upon the fundamental GNSS/IMU integration. The most important conclusion of this study is that in order to meet the challenging goals of delivering continuous, accurate and robust PNT to the ever-growing numbers of users, the hybridization of a suite of different PNT solutions is required
    • …
    corecore