3,248 research outputs found

    Functions of fuzzy logic based controllers used in smart building

    Get PDF
    The main aim of this study is to support design and development processes of advanced fuzzy-logic-based controller for smart buildings e.g., heating, ventilation and air conditioning, heating, ventilation and air conditioning (HVAC) and indoor lighting control systems. Moreover, the proposed methodology can be used to assess systems energy and environmental performances, also compare energy usages of fuzzy control systems with the performances of conventional on/off and proportional integral derivative controller (PID). The main objective and purpose of using fuzzy-logic-based model and control is to precisely control indoor thermal comfort e.g., temperature, humidity, air quality, air velocity, thermal comfort, and energy balance. Moreover, this article present and highlight mathematical models of indoor temperature and humidity transfer matrix, uncertainties of users’ comfort preference set-points and a fuzzy algorithm

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    An improved artificial dendrite cell algorithm for abnormal signal detection

    Get PDF
    In dendrite cell algorithm (DCA), the abnormality of a data point is determined by comparing the multi-context antigen value (MCAV) with anomaly threshold. The limitation of the existing threshold is that the value needs to be determined before mining based on previous information and the existing MCAV is inefficient when exposed to extreme values. This causes the DCA fails to detect new data points if the pattern has distinct behavior from previous information and affects detection accuracy. This paper proposed an improved anomaly threshold solution for DCA using the statistical cumulative sum (CUSUM) with the aim to improve its detection capability. In the proposed approach, the MCAV were normalized with upper CUSUM and the new anomaly threshold was calculated during run time by considering the acceptance value and min MCAV. From the experiments towards 12 benchmark and two outbreak datasets, the improved DCA is proven to have a better detection result than its previous version in terms of sensitivity, specificity, false detection rate and accuracy

    Thermal comfort based fuzzy logic control

    Get PDF
    Most heating, ventilation and air conditioning (HVAC) control systems are considered as temperature control problems. In this work, the predicted mean vote (PMV) is used to control the indoor temperature of a space by setting it at a point where the PMV index becomes zero and the predicted percentage of persons dissatisfied (PPD) achieves a maximum threshold of 5%. This is achieved through the use of a fuzzy logic controller that takes into account a range of human comfort criteria in the formulation of the control action that should be applied to the heating system to bring the space to comfort conditions. The resulting controller is free of the set up and tuning problems that hinder conventional HVAC controllers. Simulation results show that the proposed control strategy makes it possible to maximize the indoor thermal comfort and, correspondingly, a reduction in energy use of 20% was obtained for a typical 7-day winter period when compared with conventional control

    An ARTMAP-incorporated Multi-Agent System for Building Intelligent Heat Management

    Get PDF
    This paper presents an ARTMAP-incorporated multi-agent system (MAS) for building heat management, which aims to maintain the desired space temperature defined by the building occupants (thermal comfort management) and improve energy efficiency by intelligently controlling the energy flow and usage in the building (building energy control). Existing MAS typically uses rule-based approaches to describe the behaviours and the processes of its agents, and the rules are fixed. The incorporation of artificial neural network (ANN) techniques to the agents can provide for the required online learning and adaptation capabilities. A three-layer MAS is proposed for building heat management and ARTMAP is incorporated into the agents so as to facilitate online learning and adaptation capabilities. Simulation results demonstrate that ARTMAP incorporated MAS provides better (automated) energy control and thermal comfort management for a building environment in comparison to its existing rule-based MAS approach

    Optimization of Multi-zone Building HVAC Energy Consumption by Utilizing Fuzzy Model Based Predictive Controller

    Get PDF
    The rapid improvement of living standards has led to increased energy consumption in buildings worldwide. Globally, the energy consumed in buildings accounts for 20.1% of total delivered energy (EIA 2016). Improving energy efficiency in buildings therefore is an important component for combating climate change. This paper aims to improve end use energy efficiency in multi-zoned residential buildings through the application of thermal comfort based, energy optimization algorithms. We use a case study approach with a detailed analysis of a 4-story residential apartment building in central Illinois. The study building constitutes 21 thermal zones modeled in EnergyPlus. The model is validated using monthly energy consumption data. The effectiveness of four different steam heating system control methods are evaluated and described: a) a Model Predictive Controller (MPC) design based on neuro-fuzzy temperature predictor; b) a Proportional-Integral-Derivative (PID) tuned by fuzzy logic; c) a PID tuned by a genetic algorithm; and d) an on/off controller and the flow regulator based on indoor temperature. All are optimized for energy consumption reduction potential and thermal comfort. The main effect of the various control methods is tuning boiler feed flow by regulating the condensing cycle. A reduction in circulated steam flow results in decreased direct energy consumption and improved condensing pump efficiencies. We find that the MPC design using a neurofuzzy temperature predictor can reduce heating energy use by up to 38% in comparison with an on/off controller baseline

    Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy Using Model-Free Reinforcement Learning

    Full text link
    The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g. when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. A first challenge is that for most residential buildings a description of the thermal characteristics of the building is unavailable and challenging to obtain. A second challenge is that the relevant information on the state, i.e. the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4-9% during 100 winter days and by 9-11% during 80 summer days compared to the conventional constant set-point strategyComment: Submitted to Energies - MDPI.co

    Control of HVAC system comfort by sampling

    Get PDF
    The sampling of the users comfort, allows observing and predicting the level of comfort on the HVAC (heating, ventilation, and air conditioning) systems. The development of online sampling systems assists in the recognition of the behavior patterns that occur in the offices. This paper presents a user-friendly tool designed and developed in order to make easier knowledge extraction and representation to make possible decisions about which demand that must prevail, the user comfort or saving into a central system. This decision may depend on the occupation and feeling of comfort of its occupants. Some studies have put neutral thermal conditions outside the ranges of comfort of the ASHRAE standard. The actual rules of the HVAC systems are based on studies carried out on specific populations in a specific space, which are not valid in certain situations. This is a dynamic idea of the comfort based in real data. The methodology used provides important and useful information to be able to select the comfort set-point of the rooms of a central heating system without the need to use fixed values based on programmed time schedules or any other methodology. The response to comfort in an area of a building throughout the day can be seen in this study. The users were assessed using a standard set of key questions in order to measure the level of satisfaction with environmental factors, thanks to a questionnaire of imprecise answers. We seek an improvement in the building users, regardless of their particularities
    corecore