1,721 research outputs found

    Robotic Cameraman for Augmented Reality based Broadcast and Demonstration

    Get PDF
    In recent years, a number of large enterprises have gradually begun to use vari-ous Augmented Reality technologies to prominently improve the audiences’ view oftheir products. Among them, the creation of an immersive virtual interactive scenethrough the projection has received extensive attention, and this technique refers toprojection SAR, which is short for projection spatial augmented reality. However,as the existing projection-SAR systems have immobility and limited working range,they have a huge difficulty to be accepted and used in human daily life. Therefore,this thesis research has proposed a technically feasible optimization scheme so thatit can be practically applied to AR broadcasting and demonstrations. Based on three main techniques required by state-of-art projection SAR applica-tions, this thesis has created a novel mobile projection SAR cameraman for ARbroadcasting and demonstration. Firstly, by combining the CNN scene parsingmodel and multiple contour extractors, the proposed contour extraction pipelinecan always detect the optimal contour information in non-HD or blurred images.This algorithm reduces the dependency on high quality visual sensors and solves theproblems of low contour extraction accuracy in motion blurred images. Secondly, aplane-based visual mapping algorithm is introduced to solve the difficulties of visualmapping in these low-texture scenarios. Finally, a complete process of designing theprojection SAR cameraman robot is introduced. This part has solved three mainproblems in mobile projection-SAR applications: (i) a new method for marking con-tour on projection model is proposed to replace the model rendering process. Bycombining contour features and geometric features, users can identify objects oncolourless model easily. (ii) a camera initial pose estimation method is developedbased on visual tracking algorithms, which can register the start pose of robot to thewhole scene in Unity3D. (iii) a novel data transmission approach is introduced to establishes a link between external robot and the robot in Unity3D simulation work-space. This makes the robotic cameraman can simulate its trajectory in Unity3D simulation work-space and project correct virtual content. Our proposed mobile projection SAR system has made outstanding contributionsto the academic value and practicality of the existing projection SAR technique. Itfirstly solves the problem of limited working range. When the system is running ina large indoor scene, it can follow the user and project dynamic interactive virtualcontent automatically instead of increasing the number of visual sensors. Then,it creates a more immersive experience for audience since it supports the user hasmore body gestures and richer virtual-real interactive plays. Lastly, a mobile systemdoes not require up-front frameworks and cheaper and has provided the public aninnovative choice for indoor broadcasting and exhibitions

    SPLODE: Semi-Probabilistic Point and Line Odometry with Depth Estimation from RGB-D Camera Motion

    Get PDF
    Active depth cameras suffer from several limitations, which cause incomplete and noisy depth maps, and may consequently affect the performance of RGB-D Odometry. To address this issue, this paper presents a visual odometry method based on point and line features that leverages both measurements from a depth sensor and depth estimates from camera motion. Depth estimates are generated continuously by a probabilistic depth estimation framework for both types of features to compensate for the lack of depth measurements and inaccurate feature depth associations. The framework models explicitly the uncertainty of triangulating depth from both point and line observations to validate and obtain precise estimates. Furthermore, depth measurements are exploited by propagating them through a depth map registration module and using a frame-to-frame motion estimation method that considers 3D-to-2D and 2D-to-3D reprojection errors, independently. Results on RGB-D sequences captured on large indoor and outdoor scenes, where depth sensor limitations are critical, show that the combination of depth measurements and estimates through our approach is able to overcome the absence and inaccuracy of depth measurements.Comment: IROS 201

    Visual Map Construction Using RGB-D Sensors for Image-Based Localization in Indoor Environments

    Get PDF
    RGB-D sensors capture RGB images and depth images simultaneously, which makes it possible to acquire the depth information at pixel level. This paper focuses on the use of RGB-D sensors to construct a visual map which is an extended dense 3D map containing essential elements for image-based localization, such as poses of the database camera, visual features, and 3D structures of the building. Taking advantage of matched visual features and corresponding depth values, a novel local optimization algorithm is proposed to achieve point cloud registration and database camera pose estimation. Next, graph-based optimization is used to obtain the global consistency of the map. On the basis of the visual map, the image-based localization method is investigated, making use of the epipolar constraint. The performance of the visual map construction and the image-based localization are evaluated on typical indoor scenes. The simulation results show that the average position errors of the database camera and the query camera can be limited to within 0.2 meters and 0.9 meters, respectively

    An original application of image recognition based location in complex indoor environments

    Get PDF
    This paper describes the first results of an image recognition based location (IRBL) for a mobile application focusing on the procedure to generate a database of range images (RGB-D). In an indoor environment, to estimate the camera position and orientation, a prior spatial knowledge of the surroundings is needed. To achieve this objective, a complete 3D survey of two different environments (Bangbae metro station of Seoul and the Electronic and Telecommunications Research Institute (ETRI) building in Daejeon, Republic of Korea) was performed using a LiDAR (Light Detection and Ranging) instrument, and the obtained scans were processed to obtain a spatial model of the environments. From this, two databases of reference images were generated using specific software realised by the Geomatics group of Politecnico di Torino (ScanToRGBDImage). This tool allows us to generate synthetically different RGB-D images centred in each scan position in the environment. Later, the external parameters (X, Y, Z, ω, ϕ, and κ) and the range information extracted from the retrieved database images are used as reference information for pose estimation of a set of acquired mobile pictures in the IRBL procedure. In this paper, the survey operations, the approach for generating the RGB-D images, and the IRB strategy are reported. Finally, the analysis of the results and the validation test are described
    • …
    corecore