143 research outputs found

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Coupling Mobile Technology, Position Data Mining, and Attitude toward Risk to Improve Construction Site Safety

    Get PDF
    Construction sites comprise constantly moving heterogeneous resources that interact in close proximity of each other. The sporadic nature of such interactions creates an accident prone physical space surrounding workers. Despite efforts to improve site safety using location-aware proximity sensing techniques, major scientific gaps still remain in reliably forecasting impending hazardous scenarios before they occur. In the research documented in this thesis, spatiotemporal data of workers and site hazards are fused with a quantifiable model of an individual\u27s attitude toward risk to generate proximity-based safety alerts in real time. In particular, two trajectory prediction models, namely polynomial regression (PR) and hidden Markov model (HMM) are investigated and their effectiveness in predicting a worker\u27s position given his or her past movement trajectory is evaluated. Next, HMM prediction is further improved and calibrated by factoring in a worker\u27s risk profile, a measure of his affinity for or aversion to risky behavior near hazards. Finally, a mobile application is designed and tested in a series of field experiments involving trajectories of different shape and complexity to verify the applicability and value of the designed methodology in addressing construction safety-related problems. Results demonstrate that the developed risk-calibrated HMM-based motion trajectory prediction can reliably detect unsafe movements and impending collision events

    Measuring interaction proxemics with wearable light tags

    Get PDF
    The proxemics of social interactions (e.g., body distance, relative orientation) in!uences many aspects of our everyday life: from patients’ reactions to interaction with physicians, successes in job interviews, to effective teamwork. Traditionally, interaction proxemics has been studied via questionnaires and participant observations, imposing high burden on users, low scalability and precision, and often biases. In this paper we present Protractor, a novel wearable technology for measuring interaction proxemics as part of non-verbal behavior cues with# ne granularity. Protractor employs near-infrared light to monitor both the distance and relative body orientation of interacting users. We leverage the characteristics of near-infrared light (i.e., line-of-sight propagation) to accurately and reliably identify interactions; a pair of collocated photodiodes aid the inference of relative interaction angle and distance. We achieve robustness against temporary blockage of the light channel (e.g., by the user’s hand or clothes) by designing sensor fusion algorithms that exploit inertial sensors to obviate the absence of light tracking results. We fabricated Protractor tags and conducted real-world experiments. Results show its accuracy in tracking body distances and relative angles. The framework achieves less than 6 error 95% of the time for measuring relative body orientation and 2.3-cm – 4.9-cm mean error in estimating interaction distance. We deployed Protractor tags to track user’s non-verbal behaviors when conducting collaborative group tasks. Results with 64 participants show that distance and angle data from Protractor tags can help assess individual’s task role with 84.9% accuracy, and identify task timeline with 93.2% accuracy

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Assessment of Audio Interfaces for use in Smartphone Based Spatial Learning Systems for the Blind

    Get PDF
    Recent advancements in the field of indoor positioning and mobile computing promise development of smart phone based indoor navigation systems. Currently, the preliminary implementations of such systems only use visual interfaces—meaning that they are inaccessible to blind and low vision users. According to the World Health Organization, about 39 million people in the world are blind. This necessitates the need for development and evaluation of non-visual interfaces for indoor navigation systems that support safe and efficient spatial learning and navigation behavior. This thesis research has empirically evaluated several different approaches through which spatial information about the environment can be conveyed through audio. In the first experiment, blindfolded participants standing at an origin in a lab learned the distance and azimuth of target objects that were specified by four audio modes. The first three modes were perceptual interfaces and did not require cognitive mediation on the part of the user. The fourth mode was a non-perceptual mode where object descriptions were given via spatial language using clockface angles. After learning the targets through the four modes, the participants spatially updated the position of the targets and localized them by walking to each of them from two indirect waypoints. The results also indicate hand motion triggered mode to be better than the head motion triggered mode and comparable to auditory snapshot. In the second experiment, blindfolded participants learned target object arrays with two spatial audio modes and a visual mode. In the first mode, head tracking was enabled, whereas in the second mode hand tracking was enabled. In the third mode, serving as a control, the participants were allowed to learn the targets visually. We again compared spatial updating performance with these modes and found no significant performance differences between modes. These results indicate that we can develop 3D audio interfaces on sensor rich off the shelf smartphone devices, without the need of expensive head tracking hardware. Finally, a third study, evaluated room layout learning performance by blindfolded participants with an android smartphone. Three perceptual and one non-perceptual mode were tested for cognitive map development. As expected the perceptual interfaces performed significantly better than the non-perceptual language based mode in an allocentric pointing judgment and in overall subjective rating. In sum, the perceptual interfaces led to better spatial learning performance and higher user ratings. Also there is no significant difference in a cognitive map developed through spatial audio based on tracking user’s head or hand. These results have important implications as they support development of accessible perceptually driven interfaces for smartphones

    HABITAT: An IoT Solution for Independent Elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    HABITAT: An IoT solution for independent elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users
    • …
    corecore