451 research outputs found

    RSS-Based Indoor Localization System with Single Base Station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    Indoor location based services challenges, requirements and usability of current solutions

    Get PDF
    Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging solutions and the technologies that may help to handle this challenge

    RSS-based indoor localization system with single base station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    A survey of fuzzy logic in wireless localization

    Get PDF

    Development of a WiFi and RFID based indoor location and mobility tracking system

    Get PDF
    Ubiquitous positioning and people mobility tracking has become one of the critical parts of our daily life. As a core element of the Location Based Services (LBS), the ubiquitous positioning capability necessitates seamless positioning across both indoor and outdoor environments. Nowadays, tracking outdoor with a relatively high accuracy and reliability can be achieved using matured technologies such as Global Navigation Satellite Systems (GNSS). However, it is still challenging for tracking in indoor environments such as airports, shopping malls and museums. The demand for indoor tracking has driven the fast development of indoor positioning and tracking technologies, especially Wi-Fi, RFID and smartphone etc. All these technologies have significantly enhanced the convenience of people’s daily life and the competitiveness of business firms. With the rapidly increased ubiquity of Wi-Fi enabled mobile phones and tablets, developing a robust location and mobility tracking system utilising such technologies will have a great potential for industry innovation and applications. This research is part of an Australian Research Council (ARC) project that involves two universities and one industry partner who is a large global shopping mall management company located in Australia. The project aims to develop a smart system for robust modelling and analysing the shopping behaviours of customers so that value-added services can be effectively provided. A number of field tests have been conducted and a large amount of data has been acquired both in the shopping mall of interest and the RMIT Indoor Positioning Laboratory. A large cohort of real users in the shopping mall were recorded where only one Wi-Fi access point (AP) connection at a time for each mobile device user was provided for our research. This makes most of the conventional tracking and positioning methods inapplicable. To overcome this constraint, a new hybrid system for positioning and mobility tracking — called single AP-connection location tracking system (SCLTS) was developed, which utilised Wi-Fi, RFID and mobile device technologies and took advantage of both the cell of origin (CoO) and fingerprinting positioning methods. Three new algorithms for Wi-Fi based indoor positioning were developed during this research. They are the common handover point determination (CHOPD) algorithm for determining the boundary of the cell; the algorithm for positioning with the case of same-line-dual-connection (SLDC) in a long narrow space (e.g., a long corridor) and the algorithm for positioning with the case of perpendicular-dual-connection of APs in a T-shape corridor for improving the positioning accuracy. The architecture of the SCLTS system was also developed as part of the implementation of the SCLTS system. Various experiments were conducted in a simulated large shopping-mall-like environment (i.e., the RMIT Indoor Positioning Lab) and the results showed that the performance of the SCLTS developed was very promising and the original goal of the project has been achieved. In addition, the two most popular indoor positioning methods — trilateration and fingerprinting were also optimised and implemented in a real industrial product and promising results have been achieved

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Radio Frequency-Based Indoor Localization in Ad-Hoc Networks

    Get PDF
    The increasing importance of location‐aware computing and context‐dependent information has led to a growing interest in low‐cost indoor positioning with submeter accuracy. Localization algorithms can be classified into range‐based and range‐free techniques. Additionally, localization algorithms are heavily influenced by the technology and network architecture utilized. Availability, cost, reliability and accuracy of localization are the most important parameters when selecting a localization method. In this chapter, we introduce basic localization techniques, discuss how they are implemented with radio frequency devices and then characterize the localization techniques based on the network architecture, utilized technologies and application of localization. We then investigate and address localization in indoor environments where the absence of global positioning system (GPS) and the presence of unique radio propagation properties make this problem one of the most challenging topics of localization in wireless networks. In particular, we study and review the previous work for indoor localization based on radio frequency (RF) signaling (like Bluetooth‐based localization) to illustrate localization challenges and how some of them can be overcome
    corecore