1,527 research outputs found

    Enhancing wireless communication system performance through modified indoor environments

    Get PDF
    This thesis reports the methods, the deployment strategies and the resulting system performance improvement of in-building environmental modification. With the increasing use of mobile computing devices such as PDAs, laptops, and the expansion of wireless local area networks (WLANs), there is growing interest in increasing productivity and efficiency through enhancing received signal power. This thesis proposes the deployment of waveguides consisting of frequency selective surfaces (FSSs) in indoor wireless environments and investigates their effect on radio wave propagation. The received power of the obstructed (OBS) path is attenuated significantly as compared with that of the line of sight (LOS) path, thereby requiring an additional link budget margin as well as increased battery power drain. In this thesis, the use of an innovative model is also presented to selectively enhance radio propagation in indoor areas under OBS conditions by reflecting the channel radio signals into areas of interest in order to avoid significant propagation loss. An FSS is a surface which exhibits reflection and/or transmission properties as a function of frequency. An FSS with a pass band frequency response was applied to an ordinary or modified wall as a wallpaper to transform the wall into a frequency selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL). Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas other radio services, such as cellular telephony at 1.8GHz, have other routes to penetrate or escape. The FSS performance has been examined intensely by both equivalent circuit modelling, simulation, and practical measurements. Factors that influence FSS performance such as the FSS element dimensions, element conductivities, dielectric substrates adjacent to the FSS, and signal incident angles, were investigated. By keeping the elements small and densely packed, a largely angle-insensitive FSS was developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled, simulated, and the measured results was observed. Finally, a small-scale indoor environment has been constructed and measured in a half-wave chamber and free space measurements in order to practically verify this approach and through the usage of the deterministic ray tracing technique. An initial investigation showing that the use of an innovative model can increase capacity in MIMO systems. This can be explained by the presence of strong multipath components which give rise to a low correlated Rayleigh Channel. This research work has linked the fields of antenna design, communication systems, and building architecture

    Indoor Cooperative Localization for Ultra Wideband Wireless Sensor Networks

    Get PDF
    In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications. Localization information in these networks is an enabling technology and in some applications it is the main sought after parameter. The cooperative localization performance of WSNs is ultimately constrained by the behavior of the utilized ranging technology in dense cluttered indoor environments. Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited potential due to its large bandwidth and high time resolution. However, the performance of its ranging and cooperative localization capabilities in dense indoor multipath environments needs to be further investigated. Of main concern is the high probability of non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes, which biases the TOA estimation and degrades the localization performance. In this dissertation, we first present the results of measurement and modeling of UWB TOA-based ranging in different indoor multipath environments. We provide detailed characterization of the spatial behavior of ranging, where we focus on the statistics of the ranging error in the presence and absence of the DP and evaluate the pathloss behavior in the former case which is important for indoor geolocation coverage characterization. Parameters of the ranging error probability distributions and pathloss models are provided for different environments: traditional office, modern office, residential and manufacturing floor; and different ranging scenarios: indoor-to-indoor (ITI), outdoor-to-indoor (OTI) and roof-to-indoor (RTI). Based on the developed empirical models of UWB TOA-based OTI and ITI ranging, we derive and analyze cooperative localization bounds for WSNs in the different indoor multipath environments. First, we highlight the need for cooperative localization in indoor applications. Then we provide comprehensive analysis of the factors affecting localization accuracy such as network and ranging model parameters. Finally we introduce a novel distributed cooperative localization algorithm for indoor WSNs. The Cooperative LOcalization with Quality of estimation (CLOQ) algorithm integrates and disseminates the quality of the TOA ranging and position information in order to improve the localization performance for the entire WSN. The algorithm has the ability to reduce the effects of the cluttered indoor environments by identifying and mitigating the associated ranging errors. In addition the information regarding the integrity of the position estimate is further incorporated in the iterative distributed localization process which further reduces error escalation in the network. The simulation results of CLOQ algorithm are then compared against the derived G-CRLB, which shows substantial improvements in the localization performance

    Reliable high-data rate body-centric wireless communication

    Get PDF

    Indoor ultra-wideband channel modeling and localization using multipath estimation algorithms

    Get PDF

    Factors affecting the bit error rate performance of the indoor radio propagation channel for 2.3-2.5 GHz frequency band

    Get PDF
    The use of wireless in buildings based on microwave radio technology has recently become a viable alternative to the traditional wired transmission media. Because of the portable nature of radio transceivers, the need for extensive cabling of buildings with either twisted pair, coaxial, or optical fibre cable is eliminated. This is particularly desirable where high user mobility occurs and existing wiring is not in place, or buildings are heritage in nature and extensive cabling is seen as intrusive. Economic analysis bas also shown that significant labour cost savings can result by using a radio system or a hybrid mix of cable and radio for personal communication. The use of wireless systems within buildings introduces a new physical radio wave propagation medium, namely the indoor radio propagation channel. This physical medium has significantly different characteristics to some of the other forms of radio channels where elevated antennas, longer propagation path distances, and often minimally obstructed paths between transmit and receive antenna are common. Radio waves transmitted over the indoor channel at microwave frequencies behave much like light rays, they are blocked, scattered, and reflected by objects in the environment. As a direct result of this several phenomena unique to this form of physical medium become apparent, and they must be accounted for in the design and modelling of the indoor radio propagation channel transmission performance. In this thesis we analyse and characterise the indoor radio channel as a physical medium for data transmission. The research focuses on the influence of the radio physics aspects of an indoor microwave channel on the data transmission quality. We identify the associated statistical error performance for both time varying and temporally stationary indoor channels. Together with the theoretical analysis of the channel, a series of propagation measurements within buildings are completed to permit empirical validation of the theoretical predictions of how the indoor microwave channel should perform. The measurements are performed in the frequency range 2.3-2.5 GHz, which includes the 2.4-2.4835 GHz band allocated by spectrum management authorities for industrial scientific and medical radio use, (ISM band). As a direct result of our measurements, statistics related to channel noise, fading, and impulse response for the indoor microwave channel are obtained. The relationship between data transmission error statistics and the aforementioned phenomena is quantified and statistically analysed for the indoor radio channel and phase shift keyed (PSK) modulation. The results obtained from this research provide input data for the development of a simulation model of an indoor wireless mobile channel. Our measurements identify microwave ovens as a channel noise source of sufficient magnitude to corrupt data transmission in the ISM band, and an in depth analysis of the effect of noise emissions from operational microwave ovens on PSK modulation is presented in this thesis. As a result of this analysis, the estimated data error rates are calculated. Channel fading measurements provide results that will be used as the input data for the design of antennas for use on the indoor microwave channel. We also show that a data rate of eight megabits/second is possible over the typical indoor radio channel, with no requirement for adaptive delay equalisation to counter multipath signal delay spread

    An Analysis of Electric Field Strength for Planning Indoor Wireless Networks at Various Frequencies

    Get PDF
    Understanding the characteristics of radio wave propagation is a very important task for ensuring the required signal coverage for indoor wireless communication systems. The received signal strengths are highly affected when blocked by obstacles such as human occupants, doors, walls, windows, etc. This thesis investigated the E-field distributions inside a Victorian terraced house. Many scenarios are presented to investigate some important elements that have a significant effect on E-field distributions, such as opening and closing doors, the movement and number of human occupants and the location of the transmitter. These are considered for indoor signal propagation at various frequencies, specifically 5.8 GHz, 2.4 GHz, 868 MHz and 433 MHz. The distribution of the E- field strength within the building has been obtained using the FEKO simulation suite. The methods used in the simulation are geometrical optics and the uniform theory of diffraction. The results demonstrate that when the transmitter is located near to a wall, then the field distributions within the Victorian house are attenuated due to more reflections and multipath effects. Also, the results show that the door’s status and human occupancy effect on the electric field coverage at 5.8 GHz and 2.4 GHz is more significant than at 868 MHz and 433 MHz. The practical results demonstrate that the radio signals can penetrate through several adjacent walls within the same floor, however they became very weak when they go through different floors. This indicates that the deployment and positioning of smart meters in domestic properties has to be carefully considered. Our results clearly prove that extensive E-field measurements should be performed prior to the deployment of wireless communication system within the building

    Body-centric wireless communications: wearable antennas, channel modelling, and near-field antenna measurements

    Get PDF
    This thesis provides novel contribution to the field of body-centric wireless communications (BCWC) with the development of a measurement methodology for wearable antenna characterisation on the human body, the implementation of fully-textile wearable antennas and the on-body channel modelling considering different antenna types and user's dynamic effects. More specifically, a measurement methodology is developed for characterising wearable antennas on different locations of the human body. A cylindrical near-field (CNF) technique is employed, which facilitates wearable antenna measurements on a full-body solid anthropomorphic mannequin (SAM) phantom. This technique allows the fast extraction of the full spherical radiation pattern and the corresponding radiation efficiency, which is an important parameter for optimising wearable system design. It appears as a cost- effective and easy to implement solution that does not require expensive positioning systems to rotate the phantom, in contrast to conventional roll-over-azimuth far-field systems. Furthermore, a flexible fully-textile wearable antenna is designed, fabricated and measured at 2.4 GHz that can be easily integrated in smart clothing. It supports surface wave propagation and exhibits an omni-directional radiation pattern that makes it suitable for on-body communications. It is based on a multilayer low-profile higher-mode patch antenna (HMMPA) design with embroidered shorting vias. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that play an important role in generating the optimal mode for on-body radiation. The radiation pattern shape of the proposed fully-textile antenna was found to be similar to a copper rigid antenna, exhibiting a high on-body radiation efficiency of 50 %. The potential of the embroidery technique for creating wearable antennas is also demonstrated with the fabrication of a circularly polarised spiral antenna that achieves a broadband performance from 0.9-3 GHz, which is suitable for off-body communications. By testing the textile spiral antenna on the SAM phantom, the antenna-body interaction is examined in a wide frequency range. Finally, a statistical characterisation of on-body communication channels is undertaken both with EM simulations and channel measurements including user's dynamic movement (walking and running). By using antenna types of different polarisation, the on-body channels are examined for different propagation conditions. Four on-body channels are examined with the one part fixed on the waist of the human body while the other part located on the chest, back, wrist and foot. Channel path gain is derived, while large-scale and small-scale fading are modelled by best-fit statistical distributions
    • …
    corecore