679 research outputs found

    Indoor location error-detection via crowdsourced multi-dimensional mobile data

    Get PDF
    National Research Foundation (NRF) Singapore under IDM Futures Funding Initiativ

    Crowdsourcing-Based Fingerprinting for Indoor Location in Multi-Storey Buildings

    Get PDF
    POCI-01-0247-FEDER-033479The number of available indoor location solutions has been growing, however with insufficient precision, high implementation costs or scalability limitations. As fingerprinting-based methods rely on ubiquitous information in buildings, the need for additional infrastructure is discarded. Still, the time-consuming manual process to acquire fingerprints limits their applicability in most scenarios. This paper proposes an algorithm for the automatic construction of environmental fingerprints on multi-storey buildings, leveraging the information sources available in each scenario. It relies on unlabelled crowdsourced data from users’ smartphones. With only the floor plans as input, a demand for most applications, we apply a multimodal approach that joins inertial data, local magnetic field andWi-Fi signals to construct highly accurate fingerprints. Precise movement estimation is achieved regardless of smartphone usage through Deep Neural Networks, and the transition between floors detected from barometric data. Users’ trajectories obtained with Pedestrian Dead Reckoning techniques are partitioned into clusters with Wi-Fi measurements. Straight sections from the same cluster are then compared with subsequence Dynamic Time Warping to search for similarities. From the identified overlapping sections, a particle filter fits each trajectory into the building’s floor plans. From all successfully mapped routes, fingerprints labelled with physical locations are finally obtained. Experimental results from an office and a university building show that this solution constructs comparable fingerprints to those acquired manually, thus providing a useful tool for fingerprinting-based solutions automatic setup.publishersversionpublishe

    Mobility increases localizability: A survey on wireless indoor localization using inertial sensors

    Get PDF

    Human-centred artificial intelligence for mobile health sensing:challenges and opportunities

    Get PDF
    Advances in wearable sensing and mobile computing have enabled the collection of health and well-being data outside of traditional laboratory and hospital settings, paving the way for a new era of mobile health. Meanwhile, artificial intelligence (AI) has made significant strides in various domains, demonstrating its potential to revolutionize healthcare. Devices can now diagnose diseases, predict heart irregularities and unlock the full potential of human cognition. However, the application of machine learning (ML) to mobile health sensing poses unique challenges due to noisy sensor measurements, high-dimensional data, sparse and irregular time series, heterogeneity in data, privacy concerns and resource constraints. Despite the recognition of the value of mobile sensing, leveraging these datasets has lagged behind other areas of ML. Furthermore, obtaining quality annotations and ground truth for such data is often expensive or impractical. While recent large-scale longitudinal studies have shown promise in leveraging wearable sensor data for health monitoring and prediction, they also introduce new challenges for data modelling. This paper explores the challenges and opportunities of human-centred AI for mobile health, focusing on key sensing modalities such as audio, location and activity tracking. We discuss the limitations of current approaches and propose potential solutions
    corecore