577 research outputs found

    Wi-Fi Indoor Positioning Fingerprint Health Analysis for a Large Scale Deployment

    Get PDF
    Indoor positioning systems (IPS) have witnessed continuous improvements over the years. However, large scale commercial deployments remain elusive due to various factors such as high deployment cost and/or lacked of market drivers. Among the state of the art indoor positioning approaches, the Wi-Fi fingerprinting technique in particular, is gaining a lot of attention due its ease of deployment. This is largely due to widespread deployment of WiFi infrastructure and its availability in all existing mobile devices. Although WiFi fingerprinting approach is relatively low cost and fast to deploy, the accuracy of the system tends to deteriorate over time due to WiFi access points (APs) being removed and shifted. In this paper, we carried out a study on such deterioration, which we refer to as fingerprint health analysis on a 2 million square feet shopping mall in South of Kuala Lumpur, Malaysia. We focus our study on APs removal using the actual data collected from the premise. The study reveals the following findings: 1) Based on per location pin analysis, ~50% of APs belong to the mall operator which is a preferred group of APs for fingerprinting. For some location however, the number of operator-managed APs are too few for fingerprinting positioning approach. 2) To maintain mean error distance of ~5 meter, up to 80% of the APs can be removed using the selected positioning algorithms at some locations. At some other locations however, the accuracy will exceed 5m upon >20% of APs being removed. 3) On average, around 40% - 60% of the APs can be removed in random manner in order to maintain the accuracy of ~5m

    Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals

    Get PDF
    Current localization techniques in the outdoors cannot work well in indoors. The Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However, in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use the affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also, we assign lower weights to alter APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs

    MetaLoc: Learning to Learn Wireless Localization

    Full text link
    The existing indoor fingerprinting-based localization methods are rather accurate after intensive offline calibrations for a specific environment, and they are built based either on the received signal strength (RSS) or the channel state information (CSI). However, a well-calibrated localization method (which can be a pure statistical signal processing method or an emerging data-driven method) will present poor generalization abilities in changing environments, which results in large losses in knowledge and human effort. To break the environment-specific localization bottleneck, we propose a novel data-driven fingerprinting-based localization framework empowered by the model-agnostic meta-learning (MAML), named MetaLoc. Specifically, MetaLoc is characterized by its ability to rapidly adapt itself to a new, possibly unseen, environment with very little calibration. The underlying data-driven localization model is a deep neural network, and we leverage historical data previously collected from various well-calibrated environments to train an optimal set of meta-parameters as an initialization to the new environments. Furthermore, we develop two MetaLoc paradigms in the proposed MetaLoc based on the different ways of obtaining meta-parameters. The centralized paradigm using vanilla MAML is much easier to implement, while the distributed paradigm incorporates domain shifts into the vanilla MAML to accelerate the convergence speed of the training process. The experimental results obtained for both synthetic- and real datasets demonstrate MetaLoc's strengthes in terms of localization error, robustness and cost-effectiveness compared with various baseline methods

    Indoor positioning model based on people effect and ray tracing propagation

    Get PDF
    WLAN-fingerprinting has been highlighted as the preferred technology in an Indoor Positioning System (IPS) due to its accurate positioning results and minimal infrastructure cost. However, the accuracy of IPS fingerprinting is highly influenced by the fluctuation in signal strength as a result of encountering obstacles. Many researchers have modelled static obstacles such as walls and ceilings, but hardly any have modelled the effect of people presence as an obstacle although the human body significantly impacts signal strength. Hence, the people presence effect must be considered to obtain highly accurate positioning results. Previous research proposed a model that only considered the direct path between the transmitter and the receiver. However, for indoor propagation, multipath effects such as reflection can also have a significant influence, but were not considered in past work. Therefore, this research proposes an accurate indoor positioning model that considers people presence using a ray tracing (AIRY) model in a dynamic environment which relies on existing infrastructure. Three solutions were proposed to construct AIRY: an automatic radio map using ray tracing (ARM-RT), a new human model in ray tracing (HUMORY), and a people effect constant for received signal strength indicator (RSSI) adaptation. At the offline stage, 30 RSSIs were recorded at each point using a smartphone to create a radio map database (523 points). The real-time RSSI was then compared to the radio map database at the online stage using MATLAB software to determine the user position (65 test points). The proposed model was tested at Level 3 of Razak Tower, UTM Kuala Lumpur (80 × 16 m). To test the influence of people presence, the number, position, and distance of the people around the mobile device (MD) were varied. The results showed that the closer the people were to the MD in both the Line of Sight (LOS) and Non-LOS position, the greater the decrease in RSSI, in which the increment number of people will increase the amount of reflection signals to be blocked. The signal strength reduction started from 0.5 dBm with two people and reached 0.9 dBm with seven people. In addition, the ray tracing model produced smaller errors on RSSI prediction than the multi-wall model when considering the effect of people presence. The k-nearest neighbour (KNN) algorithm was used to define the position. The initial accuracy was improved from 2.04 m to 0.57 m after people presence and multipath effects were considered. In conclusion, the proposed model successfully increased indoor positioning accuracy in a dynamic environment by overcoming the people presence effect

    Smart hierarchical WiFi localization system for indoors

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Participatory location fingerprinting through stationary crowd in a public or commercial indoor environment

    Get PDF
    The training phase of indoor location fingerprinting has been traditionally performed by dedicated surveyors in a manner that is time and labour intensive. Crowdsourcing process is more efficient, but is impractical in public or commercial buildings because it requires occasional location fix provided explicitly by the participant, the availability of an indoor map for correlating the traces, and the existence of landmarks throughout the area. Here, we address these issues for the first time in this context by leveraging the existence of stationary crowd that have timetabled roles, such as desk-bound employees, lecturers and students. We propose a scalable and effortless positioning system in the context of a public/commercial building by using Wi-Fi sensor readings from its stationary occupants' smartphones combined with their timetabling information. Most significantly, the entropy concept of information theory is utilised to differentiate between good and spurious measurements in a manner that does not rely on the existence of known trusted users. Our analysis and experimental results show that, regardless of such participants' unpredictable behaviour, including not following their timetabling information, hiding their location or purposefully generating wrong data, our entropy-based filtering approach ensures the creation of a radio-map incrementally from their measurements. Its effectiveness is validated experimentally with two well-known machine learning algorithms
    corecore