11,388 research outputs found

    Indoor Depth Completion with Boundary Consistency and Self-Attention

    Full text link
    Depth estimation features are helpful for 3D recognition. Commodity-grade depth cameras are able to capture depth and color image in real-time. However, glossy, transparent or distant surface cannot be scanned properly by the sensor. As a result, enhancement and restoration from sensing depth is an important task. Depth completion aims at filling the holes that sensors fail to detect, which is still a complex task for machine to learn. Traditional hand-tuned methods have reached their limits, while neural network based methods tend to copy and interpolate the output from surrounding depth values. This leads to blurred boundaries, and structures of the depth map are lost. Consequently, our main work is to design an end-to-end network improving completion depth maps while maintaining edge clarity. We utilize self-attention mechanism, previously used in image inpainting fields, to extract more useful information in each layer of convolution so that the complete depth map is enhanced. In addition, we propose boundary consistency concept to enhance the depth map quality and structure. Experimental results validate the effectiveness of our self-attention and boundary consistency schema, which outperforms previous state-of-the-art depth completion work on Matterport3D dataset. Our code is publicly available at https://github.com/patrickwu2/Depth-CompletionComment: Accepted by ICCVW (RLQ) 201

    RDFC-GAN: RGB-Depth Fusion CycleGAN for Indoor Depth Completion

    Full text link
    The raw depth image captured by indoor depth sensors usually has an extensive range of missing depth values due to inherent limitations such as the inability to perceive transparent objects and the limited distance range. The incomplete depth map with missing values burdens many downstream vision tasks, and a rising number of depth completion methods have been proposed to alleviate this issue. While most existing methods can generate accurate dense depth maps from sparse and uniformly sampled depth maps, they are not suitable for complementing large contiguous regions of missing depth values, which is common and critical in images captured in indoor environments. To overcome these challenges, we design a novel two-branch end-to-end fusion network named RDFC-GAN, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map. The first branch employs an encoder-decoder structure, by adhering to the Manhattan world assumption and utilizing normal maps from RGB-D information as guidance, to regress the local dense depth values from the raw depth map. In the other branch, we propose an RGB-depth fusion CycleGAN to transfer the RGB image to the fine-grained textured depth map. We adopt adaptive fusion modules named W-AdaIN to propagate the features across the two branches, and we append a confidence fusion head to fuse the two outputs of the branches for the final depth map. Extensive experiments on NYU-Depth V2 and SUN RGB-D demonstrate that our proposed method clearly improves the depth completion performance, especially in a more realistic setting of indoor environments, with the help of our proposed pseudo depth maps in training.Comment: Haowen Wang and Zhengping Che are with equal contributions. Under review. An earlier version has been accepted by CVPR 2022 (arXiv:2203.10856

    The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation

    Full text link
    Denoising diffusion probabilistic models have transformed image generation with their impressive fidelity and diversity. We show that they also excel in estimating optical flow and monocular depth, surprisingly, without task-specific architectures and loss functions that are predominant for these tasks. Compared to the point estimates of conventional regression-based methods, diffusion models also enable Monte Carlo inference, e.g., capturing uncertainty and ambiguity in flow and depth. With self-supervised pre-training, the combined use of synthetic and real data for supervised training, and technical innovations (infilling and step-unrolled denoising diffusion training) to handle noisy-incomplete training data, and a simple form of coarse-to-fine refinement, one can train state-of-the-art diffusion models for depth and optical flow estimation. Extensive experiments focus on quantitative performance against benchmarks, ablations, and the model's ability to capture uncertainty and multimodality, and impute missing values. Our model, DDVM (Denoising Diffusion Vision Model), obtains a state-of-the-art relative depth error of 0.074 on the indoor NYU benchmark and an Fl-all outlier rate of 3.26\% on the KITTI optical flow benchmark, about 25\% better than the best published method. For an overview see https://diffusion-vision.github.io

    AGG-Net: Attention Guided Gated-convolutional Network for Depth Image Completion

    Full text link
    Recently, stereo vision based on lightweight RGBD cameras has been widely used in various fields. However, limited by the imaging principles, the commonly used RGB-D cameras based on TOF, structured light, or binocular vision acquire some invalid data inevitably, such as weak reflection, boundary shadows, and artifacts, which may bring adverse impacts to the follow-up work. In this paper, we propose a new model for depth image completion based on the Attention Guided Gated-convolutional Network (AGG-Net), through which more accurate and reliable depth images can be obtained from the raw depth maps and the corresponding RGB images. Our model employs a UNet-like architecture which consists of two parallel branches of depth and color features. In the encoding stage, an Attention Guided Gated-Convolution (AG-GConv) module is proposed to realize the fusion of depth and color features at different scales, which can effectively reduce the negative impacts of invalid depth data on the reconstruction. In the decoding stage, an Attention Guided Skip Connection (AG-SC) module is presented to avoid introducing too many depth-irrelevant features to the reconstruction. The experimental results demonstrate that our method outperforms the state-of-the-art methods on the popular benchmarks NYU-Depth V2, DIML, and SUN RGB-D.Comment: 9 pages, 7 figures, ICCV202
    • …
    corecore