1,294 research outputs found

    Individually Frequency Tunable Dual- and Triple-band Filters in a Single Cavity

    Full text link
    © 2013 IEEE. This paper presents a new class of second-order individually and continuously tunable dual- and triple-band bandpass filters in a single metal cavity. Each passband is realized by two identical metal posts. These dual- and triple-band tunable filters are achieved by putting two or three identical sets of metal-post pair in a single metal cavity. Metal screws are co-designed as a part of the metal posts to control their insertion depth inside the cavity. In this way, the resonant frequencies can be continuously controlled and designed at the desired frequency bands. Moreover, the distance between the two metal posts in a post pair can be freely tuned. Thus, the external quality factor (Qe) and coupling coefficient (k) between the adjacent modes can be easily adjusted to meet the specified requirement in synthesis design. At the bottom of the cavity, some grooves are used to extend the tunable frequency range and make the resonant frequency linearly varied with the height of the metal post. The center frequency of each passband can be independently tuned with a frequency range of 0.8-3.2 GHz and tunable ratio of 4. Finally, the continuously tunable dual- and triple-band bandpass filters prototypes with second order response are designed and fabricated, of which each passband can be individually tuned with a large tuning range

    Miniaturized Dual-Band Dual-Mode TM-Mode Dielectric Filter in Planar Configuration

    Get PDF
    This paper reports a new class of compact inline dual-band bandpass filters using TM-mode dielectric resonators in planar configuration. Thanks to the employment of the dielectric-loaded TM-mode waveguide configuration and the dual-mode TM120 and TM210 resonances, substantial size miniaturization and volume saving (>70%) can be obtained in comparison with conventional waveguide technology. Additionally, the planar topology of the presented concept offers highly desirable advantages for industry and mass production including the ease of manufacturing, assembly, and tuning. Furthermore, the resonating doublets and the nonresonating TM110 mode are effectively utilized to introduce and control both inter-band and outer-band transmission zeros, advantageously increasing the isolation between the two passbands and enhancing the outer-band rejection regions. The general design procedure of the proposed filter is discussed in detail. A three-pole C-band dual-band dual-mode TM-mode dielectric filter is designed, implemented, and measured to validate the proposed configuration

    High-Q Multi-band Filters

    Get PDF
    Recent development of multifunctional communication systems capable of processing large amount of data has triggered the demand for novel payload configurations with advanced filtering functions. To increase the payload flexibility, a large number of multiplexer and filter networks with different frequency plans are usually employed for the transmitting downlink. Multi-band filters are the required function in many cases for minimizing integration complexity and reducing size and mass of space systems. The multi-band filters combine the frequency spectrums of non-contiguous channels before transmitting through antenna beams, and provide sufficient rejection to the frequency spectrums of the adjacent channels, thus maintaining a high signal-to-interference ratio especially in multi-beam frequency-reuse communication systems. Traditional approaches to realize multi-band filters do not offer advantages in terms of size and mass reduction. Multi-mode resonators have the advantage of size reduction; however they are not often used in multi-band applications due to the challenges of operating the multiple modes in prescribed passbands simultaneously. The main research objective of this thesis is to investigate the feasibility of designing multi-band filters based on high-Q multi-mode resonators. Various multi-mode waveguide and dielectric resonators are explored to realize multi-band filters. The proposed multi-band filters do not require junctions and can achieve an equivalent performance with fewer cavities, thus significantly reducing the footprint when compared to traditional approaches. Furthermore, tunable multi-band filters with a constant absolute bandwidth and minimum degradation during the tuning process is investigated and developed. A systematic design approach of designing multi-band filters based on multi-mode resonators is established in this work starting from the coupling-matrix synthesis of the multi-band network. Following that, dual-band filters based on elliptical and rectangular dual-mode resonators are proposed. The two passbands of the dual-band filter are carried by two independent cavity modes and realized by an inline direct-coupled configuration. The inline dual-band filter design can convert to a diplexer structure by modifying the output ports at the end-resonators. To improve near-band frequency selection of both channels, multiple configurations to realize quasi-elliptic dual-band filter functions are proposed. The first quasi-elliptic design is based on a combination of dual-mode and single-mode rectangular resonators resulting in multiple transmission zeros and improved spurious response. The second structure is a side-coupled design based on dual-quadruplet configuration featuring a pair of transmission zeros on each of the passband and a very compact layout. Limitations of the quasi-elliptic design are investigated and modified structures have been proposed with improved RF performances. Triple-band filters are realized by three types of high-Q cavity resonator structures. Each cavity resonator employs triple-modes with resonant frequencies associated with the three passbands. The first design was an elliptical waveguide triple-band filter with an in-line configuration. Each passband of the filter was controlled by a dedicated polarization and represented by an inline direct-coupled set of resonators. The second design was a rectangular-cavity triple-band filter with a folded configuration. The folded configuration overcomes a number of drawbacks from the elliptical in-line design including an improved tunability and ease of assembly. The last design was a triple-band filter design based on dielectric loaded cavity resonators. The unique dielectric resonator structure results in triple-band filters having a very compact size, high Q, and stable thermal response. Further adding tuning capability to the multi-band filter can provide an additional degree of flexibility for the communication payload. A tunable multi-band filter with a constant absolute bandwidth is developed based on combline resonator and requiring only a single tuning element. The performance is demonstrated with an in-house-developed tuning station. It achieves a constant selectivity over a tuning range of 170 MHz and an unloaded Q better than 3000. The novel filter configurations proposed in this thesis promise to be useful not only for satellite payload applications but also for a wide range of wireless base station applications

    Advanced Filtering Solutions in Coaxial SIW Technology Based on Singlets, Cascaded Singlets, and Doublets

    Get PDF
    (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] The use of singlets, cascaded singlets and doublets in coaxial substrate integrated waveguide (SIW) technology is proposed in this paper, with the aim of implementing low-loss filters with very compact size and highly-selective symmetric, asymmetric as well as dual-band responses. Singlets based on coaxial SIW resonator structures with source-load coupling are presented and studied. Then, different filter examples based on N cascaded singlets are designed, fabricated and measured at 7.5 GHz, with up to N transmission zeros (TZs) that can be easily located below and above the passband. Moreover, the application of doublets based on a dual-mode coaxial SIW resonator with source-load coupling for achieving extremely compact dual-band filters is presented, and two examples with different bandwidth configuration for each channel are designed, demonstrating the flexibility of the proposed coaxial SIW structure. The obtained experimental results of the different implemented filters show a good agreement with simulations, thus confirming the interesting potential application of these structures for the design of very compact devices with advanced filtering responses.This work was supported by the Ministerio de Economia, Industria y Competitividad, Spanish Government, under Project TEC2016-75934-C4-3-R.Sirci, S.; Sánchez-Soriano, MÁ.; Martínez Pérez, JD.; Boria Esbert, VE. (2019). Advanced Filtering Solutions in Coaxial SIW Technology Based on Singlets, Cascaded Singlets, and Doublets. IEEE Access. 7:29901-29915. https://doi.org/10.1109/ACCESS.2019.2902956S2990129915

    Miniaturized High-Q Tunable RF Filters

    Get PDF
    This dissertation focuses on the investigation and development of novel efficient tuning techniques and the design of miniaturized high-Q tunable RF filters for high-performance reconfigurable systems and applications. First, a detailed survey of the available tuning concepts and state-of-art tunable filters is provided. Then, a novel so-called inset resonator configuration is presented for the applications of fixed and tunable coaxial filters. The design procedure of frequency tunable filters with constant absolute bandwidth (CABW) is described, and various tunable inset filters are implemented, offering many desirable merits, including the wide tuning range and stable high-Q with minimum variation. For wide octave frequency tuning ranges with CABW, a second novel concept is presented using so-called re-entrant caps tuners. Beside simplicity and compactness, this technique also features enhanced spurious performance and wider tuning capabilities than the conventional means. Also, in this dissertation, various miniaturized reconfigurable dual-band/dual-mode bandpass filters and diplexers are presented using compact dual-mode high-Q TM-mode dielectric resonators. Furthermore, a novel microfluidic-based ultra-wide frequency tuning technique for TM010-mode dielectric resonators and filters is introduced in this dissertation. In addition to the very wide tuning window, this mechanism has key advantages of low-cost, simplicity, and intrinsic switch-off. Lastly, the dissertation includes a novel bandwidth reconfiguration concept with multi-octave tuning using a single element for coaxial bandpass filters. This mechanism brings many features including the fast tuning, constant high-Q, intrinsic switch-off, and wide BW-reconfiguration

    Linear-cavity tunable fibre lasers employing an Opto-VLSI processor and a MEMS-based device

    Get PDF
    This thesis proposes and demonstrates experimentally two novel linear-cavity tunable fibre lasers employing an erbium-doped fibre (EDF) in conjunction with an Opto- VLSI processor and a MEMS-based device for wavelength selection. The Opto-VLSI processor and the MEMS-based device along with an optical collimator, a Bragg grating plate and an optical lens, enable the realisation of an optical filter for continuous tuning of wavelengths over the amplified spontaneous emission (ASE) range of the EDF. We also propose the use of a section of un-pumped EDF as a saturable absorber (SA), which suppresses noise spikes caused by the high optical pumping power. Experimental results show that by optimising a length of the SA a single wavelength, high power laser signal can be achieved. In addition, we experimentally demonstrate that the performance of the proposed linear-cavity tunable fibre lasers is better than that of ring-cavity tunable laser counterparts. Specifically, we show that linear-cavity based tunable fibre lasers can achieve higher output power, a larger side mode rejection ratio (SMRR) and narrower laser linewidth than ring-cavity tunable fibre lasers

    Multi-passband filters and tunable filters design based on coupled resonator circuits

    Get PDF
    This thesis investigates multi-passband and tunable microwave filters, it includes a new generalised design technique for multi-passband filters and a new coupling tuning structure for tunable waveguide filters. The synthesis technique is an analytical approach and offers very fast solutions to the design once the desired filter specifications are given. The technique calculates the coupling matrix and external Q-factors for a wide range of filter specifications. The centre frequency and bandwidth of each passband, and the number of passbands can all be arbitrarily chosen. To verity the calculations, multi-passband filters are realised by using inverter coupled resonator sections. Two X-band waveguide multi-passband filter examples are given to validate the theory. Besides the innovation in synthesis technique, new designs of fully tunable waveguide filters are also presented. These filters are based on the new coupling tuning structure and a separate frequency tuning structure offering tuning in both centre frequency and bandwidth of the filter. One tunable bandpass filter and one tunable notch filter is implemented in X-band waveguide circuit

    Single/dual-wavelength switchable bidirectional Q-switched all-fiber laser using a bidirectional fiber polarizer

    Get PDF
    A single/dual-wavelength switchable bidirectional Q-switched fiber laser using a bidirectional fiber polarizer is demonstrated. A 45° tilted fiber grating is used as a bidirectional fiber polarizer to induce a bidirectional intracavity birefringence filter in both clockwise (CW) and counter-clockwise (CCW) directions. A carbon nanotube saturable absorber is employed to produce Q-switched pulses. Through adjusting polarization states, switchable single/dual-wavelength lasing at 1551 and 1560 nm can be achieved in both CW and CCW directions. To the best of our knowledge, this is the first demonstration of a wavelength switchable bidirectional passively Q-switched fiber laser

    Low-loss narrowband filtering switch based on coaxial resonators

    Full text link
    © 2013 IEEE. In this paper, a narrowband filtering switch with low loss and high selectivity is presented based on coaxial resonators for the first time. PIN diodes mounted on the printed circuit boards are embedded into a coaxial filter to enable ON and OFF states. In the ON-state, the PIN diodes are turned OFF, which do not introduce the loss and affect the linearity. Two transmission zeros are generated by a novel feeding structure, which improves the skirt selectivity. In the OFF-state, the PIN diodes are turned on. Then, lumped capacitors are loaded to the coaxial resonators so that the resonant frequencies of the resonators are changed. The passband at the operating frequency cannot be formed, resulting in high isolation. For demonstration, the coaxial-resonator-based filtering switch is designed and fabricated. Good agreement between simulated and measured results verifies the proposed ideas. Comparison with other reported filtering switches is given. The proposed filtering switch shows the advantages of high Q-factor, relatively compact size, and wide stopband responses, which is attractive in wireless systems
    corecore