142 research outputs found

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Towards a Pre-Processing Algorithm for Automated Arrhythmia Detection

    Get PDF
    There are a variety of different wearable fitness/cardiac monitoring devices that are currently used in many people’s day to day life. The primary cardiac function of these devices is to monitor heart rate, however we believe that they could be utilized to detect different forms of arrhythmia. In order to categorize and identify different forms of arrhythmia, we are utilizing published EKG data sets from existing databases as a basis for machine learning. The challenge that comes from the existing data sets is that the format they present the data in does not lend itself to machine learning, which requires data to be in a vector. This makes the process of converting the existing data sets into workable vectors long and tedious. Therefore, we are working to develop an algorithm that will be able to vectorize the data from multiple different data sets so we, and anyone who wishes to use machine learning on these signals, are able to quickly and accurately use now workable, prior data sets

    Photoplethysmography-Based Machine Learning Approaches for Atrial Fibrillation Prediction:A Report From the Huawei Heart Study

    Get PDF
    BACKGROUND: Current wearable devices enable the detection of atrial fibrillation (AF), but a machine learning (ML)–based approach may facilitate accurate prediction of AF onset. OBJECTIVES: The present study aimed to develop, optimize, and validate an ML-based model for real-time prediction of AF onset in a population at high risk of incident AF. METHODS: A primary ML-based prediction model of AF onset (M1) was developed on the basis of the Huawei Heart Study, a general-population AF screening study using photoplethysmography (PPG)–based smart devices. After optimization in 554 individuals with 469,267 PPG data sets, the optimized ML-based model (M2) was further prospectively validated in 50 individuals with paroxysmal AF at high risk of AF onset, and compared with 72-hour Holter electrocardiographic (ECG) monitoring, a criterion standard, from September 1, 2019, to November 5, 2019. RESULTS: Among 50 patients with paroxysmal AF (mean age 67 ± 12 years, 40% women), there were 2,808 AF events from a total of 14,847,356 ECGs over 72 hours and 6,860 PPGs (45.83 ± 13.9 per subject per day). The best performance of M1 for AF onset prediction was achieved 4 hours before AF onset (area under the receiver operating characteristic curve: 0.94; 95% confidence interval: 0.93-0.94). M2 sensitivity, specificity, positive predictive value, negative predictive value, and accuracy (at 0 to 4 hours before AF onset) were 81.9%, 96.6%, 96.4%, 83.1%, and 88.9%, respectively, compared with 72-hour Holter ECG. CONCLUSIONS: The PPG- based ML model demonstrated good ability for AF prediction in advance. (Mobile Health [mHealth] technology for improved screening, patient involvement and optimizing integrated care in atrial fibrillation; ChiCTR-OOC-17014138
    • …
    corecore