965 research outputs found

    Development of Hybrid Automatic Segmentation Technique of a Single Leaf from Overlapping Leaves Image

    Get PDF
    The segmentation of a single leaf from an image with overlapping leaves is an important step towards the realization of effective precision agricultural systems. A popular approach used for this segmentation task is the hybridization of the Chan-Vese model and the Sobel operator CV-SO. This hybridized approach is popular because of its simplicity and effectiveness in segmenting a single leaf of interest from a complex background of overlapping leaves. However, the manual threshold and parameter tuning procedure of the CV-SO algorithm often degrades its detection performance. In this paper, we address this problem by introducing a dynamic iterative model to determine the optimal parameters for the CV-SO algorithm, which we dubbed the Dynamic CV-SO (DCV-SO) algorithm. This is a new hybrid automatic segmentation technique that attempts to improve the detection performance of the original hybrid CV-SO algorithm by reducing its mean error rate. The results obtained via simulation indicate that the proposed method yielded a 1.23% reduction in the mean error rate against the original CV-SO method

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland, 9 - 14 June 2013

    Get PDF

    The Use of Agricultural Robots in Orchard Management

    Full text link
    Book chapter that summarizes recent research on agricultural robotics in orchard management, including Robotic pruning, Robotic thinning, Robotic spraying, Robotic harvesting, Robotic fruit transportation, and future trends.Comment: 22 page

    Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit

    Get PDF
    Background: Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a ‘pouch and wick’ system (n = ~24 replicates per genotype). The mineral composition of 3–6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Results: Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. Conclusions: High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits

    Protocol for soil functionality assessment in vineyards

    Get PDF
    Protocols used by Resolve partners during the project, to assess soil functionality on degraded aeras and evaluate soil restoration after applying recovering practices

    Protocol for soil functionality assessment in vineyards

    Get PDF
    Protocols used by Resolve partners during the project, to assess soil functionality on degraded aeras and evaluate soil restoration after applying recovering practices
    corecore