34,695 research outputs found

    Of course we share! Testing Assumptions about Social Tagging Systems

    Full text link
    Social tagging systems have established themselves as an important part in today's web and have attracted the interest from our research community in a variety of investigations. The overall vision of our community is that simply through interactions with the system, i.e., through tagging and sharing of resources, users would contribute to building useful semantic structures as well as resource indexes using uncontrolled vocabulary not only due to the easy-to-use mechanics. Henceforth, a variety of assumptions about social tagging systems have emerged, yet testing them has been difficult due to the absence of suitable data. In this work we thoroughly investigate three available assumptions - e.g., is a tagging system really social? - by examining live log data gathered from the real-world public social tagging system BibSonomy. Our empirical results indicate that while some of these assumptions hold to a certain extent, other assumptions need to be reflected and viewed in a very critical light. Our observations have implications for the design of future search and other algorithms to better reflect the actual user behavior

    Semantic Stability in Social Tagging Streams

    Full text link
    One potential disadvantage of social tagging systems is that due to the lack of a centralized vocabulary, a crowd of users may never manage to reach a consensus on the description of resources (e.g., books, users or songs) on the Web. Yet, previous research has provided interesting evidence that the tag distributions of resources may become semantically stable over time as more and more users tag them. At the same time, previous work has raised an array of new questions such as: (i) How can we assess the semantic stability of social tagging systems in a robust and methodical way? (ii) Does semantic stabilization of tags vary across different social tagging systems and ultimately, (iii) what are the factors that can explain semantic stabilization in such systems? In this work we tackle these questions by (i) presenting a novel and robust method which overcomes a number of limitations in existing methods, (ii) empirically investigating semantic stabilization processes in a wide range of social tagging systems with distinct domains and properties and (iii) detecting potential causes for semantic stabilization, specifically imitation behavior, shared background knowledge and intrinsic properties of natural language. Our results show that tagging streams which are generated by a combination of imitation dynamics and shared background knowledge exhibit faster and higher semantic stability than tagging streams which are generated via imitation dynamics or natural language streams alone

    Content Reuse and Interest Sharing in Tagging Communities

    Full text link
    Tagging communities represent a subclass of a broader class of user-generated content-sharing online communities. In such communities users introduce and tag content for later use. Although recent studies advocate and attempt to harness social knowledge in this context by exploiting collaboration among users, little research has been done to quantify the current level of user collaboration in these communities. This paper introduces two metrics to quantify the level of collaboration: content reuse and shared interest. Using these two metrics, this paper shows that the current level of collaboration in CiteULike and Connotea is consistently low, which significantly limits the potential of harnessing the social knowledge in communities. This study also discusses implications of these findings in the context of recommendation and reputation systems.Comment: 6 pages, 6 figures, AAAI Spring Symposium on Social Information Processin

    Online Popularity and Topical Interests through the Lens of Instagram

    Full text link
    Online socio-technical systems can be studied as proxy of the real world to investigate human behavior and social interactions at scale. Here we focus on Instagram, a media-sharing online platform whose popularity has been rising up to gathering hundred millions users. Instagram exhibits a mixture of features including social structure, social tagging and media sharing. The network of social interactions among users models various dynamics including follower/followee relations and users' communication by means of posts/comments. Users can upload and tag media such as photos and pictures, and they can "like" and comment each piece of information on the platform. In this work we investigate three major aspects on our Instagram dataset: (i) the structural characteristics of its network of heterogeneous interactions, to unveil the emergence of self organization and topically-induced community structure; (ii) the dynamics of content production and consumption, to understand how global trends and popular users emerge; (iii) the behavior of users labeling media with tags, to determine how they devote their attention and to explore the variety of their topical interests. Our analysis provides clues to understand human behavior dynamics on socio-technical systems, specifically users and content popularity, the mechanisms of users' interactions in online environments and how collective trends emerge from individuals' topical interests.Comment: 11 pages, 11 figures, Proceedings of ACM Hypertext 201
    • …
    corecore