670 research outputs found

    Optimization of fed-batch fermentation processes using the Backtracking Search Algorithm

    Get PDF
    Fed-batch fermentation has gained attention in recent years due to its beneficial impact in the economy and productivity of bioprocesses. However, the complexity of these processes requires an expert system that involves swarm intelligence-based metaheuristics such as Artificial Algae Algorithm (AAA), Artificial Bee Colony (ABC), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Differential Evolution (DE) for simulation and optimization of the feeding trajectories. DE traditionally performs better than other evolutionary algorithms and swarm intelligence techniques in optimization of fed-batch fermentation. In this work, an improved version of DE namely Backtracking Search Algorithm (BSA) has edged DE and other recent metaheuristics to emerge as superior optimization method. This is shown by the results obtained by comparing the performance of BSA, DE, CMAES, AAA and ABC in solving six fed batch fermentation case studies. BSA gave the best overall performance by showing improved solutions and more robust convergence in comparison with various metaheuristics used in this work. Also, there is a gap in the study of fed-batch application of wastewater and sewage sludge treatment. Thus, the fed batch fermentation problems in winery wastewater treatment and biogas generation from sewage sludge are investigated and reformulated for optimization

    Multiagent systems: games and learning from structures

    Get PDF
    Multiple agents have become increasingly utilized in various fields for both physical robots and software agents, such as search and rescue robots, automated driving, auctions and electronic commerce agents, and so on. In multiagent domains, agents interact and coadapt with other agents. Each agent's choice of policy depends on the others' joint policy to achieve the best available performance. During this process, the environment evolves and is no longer stationary, where each agent adapts to proceed towards its target. Each micro-level step in time may present a different learning problem which needs to be addressed. However, in this non-stationary environment, a holistic phenomenon forms along with the rational strategies of all players; we define this phenomenon as structural properties. In our research, we present the importance of analyzing the structural properties, and how to extract the structural properties in multiagent environments. According to the agents' objectives, a multiagent environment can be classified as self-interested, cooperative, or competitive. We examine the structure from these three general multiagent environments: self-interested random graphical game playing, distributed cooperative team playing, and competitive group survival. In each scenario, we analyze the structure in each environmental setting, and demonstrate the structure learned as a comprehensive representation: structure of players' action influence, structure of constraints in teamwork communication, and structure of inter-connections among strategies. This structure represents macro-level knowledge arising in a multiagent system, and provides critical, holistic information for each problem domain. Last, we present some open issues and point toward future research

    Bio-inspired Optimization: Algorithm, Analysis and Scope of Application

    Get PDF
    In the last few years, bio-inspired optimization techniques have been widely adopted in fields such as computer science, mathematics, and biology in order to optimize solutions. Bio inspired optimization problems are usually nonlinear and restricted to multiple nonlinear constraints to tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This work comprises state-of-art of ten recent bio-inspired algorithms, gap analysis, and its applications namely; Particle swarm optimization (PSO), Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Cuckoo Search Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions on the essence of these algorithms and their connections to self-organization and their applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future

    Layout optimisation algorithms and reliability assessment of wind farm for microgrid integration:A comprehensive review

    Get PDF
    Abstract The paper represents a comprehensive review of the wind farm layout and reliability assessment of the wind farm integrated electrical power system. The authors have done a review on the proliferation of renewable energy which raises the uncertainties in the electrical power system. The uncertainties including wind speed and wake effect are important to deal with when an isolated microgrid is considered. The scenario becomes vigilant when the wind farms are integrated with the main grid. Due to uncertainties, the study of reliability evaluation of a wind integrated power system would become significant to analyse the electrical power system behaviour effectively. So, the paper discusses the layout optimisation methods of wind turbines considering the uncertainty parameters, mainly the wake effect. In this regard, the different wake models and optimisation methods based on a single‐objective and multi‐objective functions are reviewed in detail with the proper comparisons. The paper serves as a better illustration of the competency of these optimisation methods on the optimal wind turbine location on a wind farm. Furthermore, the paper extends the view on the reliability and cost assessment, and reliability improvement techniques of the wind integrated power system. This article provides comprehensive information, yields an attractive and subsequent tool for research requirements for the researchers to design the wind farm layout, and assessed the reliability of a wind integrated power system

    Solution of the Multi-objective Economic and Emission Load Dispatch Problem Using Adaptive Real Quantum Inspired Evolutionary Algorithm

    Get PDF
    Economic load dispatch is a complex and significant problem in power generation. The inclusion of emission with economic operation makes it a Multi-objective economic emission load dispatch (MOEELD) problem. So it is a tough task to resolve a constrained MOEELD problem with antagonistic multiple objectives of emission and cost. Evolutionary Algorithms (EA) have been widely used for solving such complex multi-objective problems. However, the performance of EAs on such problems is dependent on the choice of the operators and their parameters, which becomes a complex issue to solve in itself. The present work is carried out to solve a Multi-objective economic emission load dispatch problem using a Multi-objective adaptive real coded quantum-inspired evolutionary algorithm (MO-ARQIEA) with gratifying all the constraints of unit and system. A repair-based constraint handling and adaptive quantum crossover operator (ACO) are used to satisfy the constraints and preserve the diversity of the suggested approach. The suggested approach is evaluated on the IEEE 30-Bus system consisting of six generating units. These results obtained for different test cases are compared with other reputed and well-known techniques

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Computational Methods for Medical and Cyber Security

    Get PDF
    Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields

    Clustering in Recommendation Systems Using Swarm Intelligence

    Get PDF
    Ένα σύστημα συστάσεων είναι μία εφαρμογή που εκμεταλλεύεται πληροφορίες για να βοηθήσει τους χρήστες στη λήψη αποφάσεων προτείνοντας αντικείμενα που μπορεί να τους αρέσουν. Ένα σύστημα συστάσεων που βασίζεται στην τεχνική του συνεργατικού φιλτραρίσματος (collaborative filtering) δημιουργεί συστάσεις στους χρήστες με βάση τις προτιμήσεις παρόμοιων χρηστών. Ωστόσο, αυτός ο τύπος συστήματος συστάσεων δεν είναι τόσο αποτελεσματικός όταν τα δεδομένα αυξάνονται σε μεγάλο βαθμό (scalability) ή όταν δεν υπάρχει αρκετή πληροφορία (sparsity), καθώς δεν ομαδοποιούνται σωστά οι παρόμοιοι χρήστες. Αυτή η διπλωματική εργασία προτείνει τρείς υβριδικούς αλγορίθμους που ο καθένας συνδυάζει τον αλγόριθμο k-means με έναν αλγόριθμο ευφυΐας σμήνους για να βελτιώσει την ομαδοποίηση των χρηστών, και κατ’ επέκταση την ποιότητα των συστάσεων. Οι αλγόριθμοι ευφυΐας σμήνους που χρησιμοποιούνται είναι o αλγόριθμος τεχνητής κοινωνίας μελισσών (artificial bee colony), ο αλγόριθμος βελτιστοποίησης αναζήτησης κούκων (cuckoo search optimization) και ο αλγόριθμος βελτιστοποίησης γκρίζων λύκων (grey-wolf optimization). Οι προτεινόμενες μέθοδοι αξιολογήθηκαν χρησιμοποιώντας ένα σύνολο δεδομένων του MovieLens. Η αξιολόγηση δείχνει πως τα προτεινόμενα συστήματα συστάσεων αποδίδουν καλύτερα σε σύγκριση με τις ήδη υπάρχουσες τεχνικές όσον αφορά τις μετρικές του μέσου απόλυτου σφάλματος (mean absolute error - MAE), της ακρίβειας (precision), του αθροίσματος των τετραγωνικών σφαλμάτων (sum of squared errors - SSE) και της ανάκλησης (recall). Επιπλέον, τα αποτελέσματα της αξιολόγησης δείχνουν πως ο υβριδικός αλγόριθμος που χρησιμοποιεί την μέθοδο της τεχνητής κοινωνίας μελισσών αποδίδει ελαφρώς καλύτερα από τους άλλους δύο προτεινόμενους αλγορίθμους.A recommender system (RS) is an application that exploits information to help users in decision making by suggesting items they might like. A collaborative recommender system generates recommendations to users based on their similar neighbor’s preferences. However, this type of recommender system faces the data sparsity and scalability problems making the neighborhood selection a challenging task. This thesis proposes three hybrid collaborative recommender systems that each one combines the k-means algorithm with a different bio-inspired technique to enhance the clustering task, and therefore to improve the recommendation quality. The used bio-inspired techniques are artificial bee colony (ABC), cuckoo search optimization (CSO), and grey-wolf optimizer (GWO). The proposed approaches were evaluated over a MovieLens dataset. The evaluation shows that the proposed recommender systems perform better compared to already existing techniques in terms of mean absolute error (MAE), precision, sum of squared errors (SSE), and recall. Moreover, the experimental results indicate that the hybrid recommender system that uses the ABC method performs slightly better than the other two proposed hybrid algorithms
    corecore