293 research outputs found

    Detecting Stops from GPS Trajectories: A Comparison of Different GPS Indicators for Raster Sampling Methods

    Get PDF
    With the increasing prevalence of GPS tracking capabilities on smartphones, GPS trajectories have proven to be useful for an extensive range of research topics. Stop detection, which estimates activity locations, is fundamental for organizing GPS trajectories into semantically meaningful journeys. With previous methods overwhelmingly dependent on thresholds, contextual information or a pre-understanding of the GPS records, this paper addresses the challenge by contributing a ‘top-down’ raster sampling method which samples pre-calculated GPS indicators and clusters the raster cells with significantly different values as stops. We report a comparison of a set of precalculated GPS indicators with two baseline methods. By referencing a ground truth travel dairy, the raster sampling method demonstrates good and reliable capabilities on producing high accuracy, low redundancy and close proximity to the ground truth in three distinct travel use cases. This further indicates a good generic stop detection method

    Profiling and Grouping Space-time Activity Patterns of Urban Individuals

    Get PDF
    No abstract

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management
    • …
    corecore