151 research outputs found

    Identity-based cryptography from paillier cryptosystem.

    Get PDF
    Au Man Ho Allen.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 60-68).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 2 --- Preliminaries --- p.5Chapter 2.1 --- Complexity Theory --- p.5Chapter 2.2 --- Algebra and Number Theory --- p.7Chapter 2.2.1 --- Groups --- p.7Chapter 2.2.2 --- Additive Group Zn and Multiplicative Group Z*n --- p.8Chapter 2.2.3 --- The Integer Factorization Problem --- p.9Chapter 2.2.4 --- Quadratic Residuosity Problem --- p.11Chapter 2.2.5 --- Computing e-th Roots (The RSA Problem) --- p.13Chapter 2.2.6 --- Discrete Logarithm and Related Problems --- p.13Chapter 2.3 --- Public key Cryptography --- p.16Chapter 2.3.1 --- Encryption --- p.17Chapter 2.3.2 --- Digital Signature --- p.20Chapter 2.3.3 --- Identification Protocol --- p.22Chapter 2.3.4 --- Hash Function --- p.24Chapter 3 --- Paillier Cryptosystems --- p.26Chapter 3.1 --- Introduction --- p.26Chapter 3.2 --- The Paillier Cryptosystem --- p.27Chapter 4 --- Identity-based Cryptography --- p.30Chapter 4.1 --- Introduction --- p.31Chapter 4.2 --- Identity-based Encryption --- p.32Chapter 4.2.1 --- Notions of Security --- p.32Chapter 4.2.2 --- Related Results --- p.35Chapter 4.3 --- Identity-based Identification --- p.36Chapter 4.3.1 --- Security notions --- p.37Chapter 4.4 --- Identity-based Signature --- p.38Chapter 4.4.1 --- Security notions --- p.39Chapter 5 --- Identity-Based Cryptography from Paillier System --- p.41Chapter 5.1 --- Identity-based Identification schemes in Paillier setting --- p.42Chapter 5.1.1 --- Paillier-IBI --- p.42Chapter 5.1.2 --- CGGN-IBI --- p.43Chapter 5.1.3 --- GMMV-IBI --- p.44Chapter 5.1.4 --- KT-IBI --- p.45Chapter 5.1.5 --- Choice of g for Paillier-IBI --- p.46Chapter 5.2 --- Identity-based signatures from Paillier system . . --- p.47Chapter 5.3 --- Cocks ID-based Encryption in Paillier Setting . . --- p.48Chapter 6 --- Concluding Remarks --- p.51A Proof of Theorems --- p.53Chapter A.1 --- "Proof of Theorems 5.1, 5.2" --- p.53Chapter A.2 --- Proof Sketch of Remaining Theorems --- p.58Bibliography --- p.6

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Contributions to Lattice–based Cryptography

    Get PDF
    Post–quantum cryptography (PQC) is a new and fast–growing part of Cryptography. It focuses on developing cryptographic algorithms and protocols that resist quantum adversaries (i.e., the adversaries who have access to quantum computers). To construct a new PQC primitive, a designer must use a mathematical problem intractable for the quantum adversary. Many intractability assumptions are being used in PQC. There seems to be a consensus in the research community that the most promising are intractable/hard problems in lattices. However, lattice–based cryptography still needs more research to make it more efficient and practical. The thesis contributes toward achieving either the novelty or the practicality of lattice– based cryptographic systems

    Efficient public-key cryptography with bounded leakage and tamper resilience

    Get PDF
    We revisit the question of constructing public-key encryption and signature schemes with security in the presence of bounded leakage and tampering memory attacks. For signatures we obtain the first construction in the standard model; for public-key encryption we obtain the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our constructions are based on generic building blocks, and, as we show, also admit efficient instantiations under fairly standard number-theoretic assumptions. The model of bounded tamper resistance was recently put forward by Damgård et al. (Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tampering attacks without making hardware assumptions (such as the existence of a protected self-destruct or key-update mechanism), the only restriction being on the number of allowed tampering attempts (which is a parameter of the scheme). This allows to circumvent known impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being able to capture realistic tampering attack

    Privacy Enhancing Protocols using Pairing Based Cryptography

    Get PDF
    This thesis presents privacy enhanced cryptographic constructions, consisting of formal definitions, algorithms and motivating applications. The contributions are a step towards the development of cryptosystems which, from the design phase, incorporate privacy as a primary goal. Privacy offers a form of protection over personal and other sensitive data to individuals, and has been the subject of much study in recent years. Our constructions are based on a special type of algebraic group called bilinear groups. We present existing cryptographic constructions which use bilinear pairings, namely Identity-Based Encryption (IBE). We define a desirable property of digital signatures, blindness, and present new IBE constructions which incorporate this property. Blindness is a desirable feature from a privacy perspective as it allows an individual to obscure elements such as personal details in the data it presents to a third party. In IBE, blinding focuses on obscuring elements of the identity string which an individual presents to the key generation centre. This protects an individual's privacy in a direct manner by allowing her to blind sensitive elements of the identity string and also prevents a key generation centre from subsequently producing decryption keys using her full identity string. Using blinding techniques, the key generation centre does not learn the full identity string. In this thesis, we study selected provably-secure cryptographic constructions. Our contribution is to reconsider the design of such constructions with a view to incorporating privacy. We present the new, privacy-enhanced cryptographic protocols using these constructions as primitives. We refine useful existing security notions and present feasible security definitions and proofs for these constructions

    Searchable Encryption for Cloud and Distributed Systems

    Get PDF
    The vast development in information and communication technologies has spawned many new computing and storage architectures in the last two decades. Famous for its powerful computation ability and massive storage capacity, cloud services, including storage and computing, replace personal computers and software systems in many industrial applications. Another famous and influential computing and storage architecture is the distributed system, which refers to an array of machines or components geographically dispersed but jointly contributes to a common task, bringing premium scalability, reliability, and efficiency. Recently, the distributed cloud concept has also been proposed to benefit both cloud and distributed computing. Despite the benefits of these new technologies, data security and privacy are among the main concerns that hinder the wide adoption of these attractive architectures since data and computation are not under the control of the end-users in such systems. The traditional security mechanisms, e.g., encryption, cannot fit these new architectures since they would disable the fast access and retrieval of remote storage servers. Thus, an urgent question turns to be how to enable refined and efficient data retrieval on encrypted data among numerous records (i.e., searchable encryption) in the cloud and distributed systems, which forms the topic of this thesis. Searchable encryption technologies can be divided into Searchable Symmetric Encryption (SSE) and Public-key Encryption with Keyword Search (PEKS). The intrinsical symmetric key hinders data sharing since it is problematic and insecure to reveal one’s key to others. However, SSE outperforms PEKS due to its premium efficiency and is thus is prefered in a number of keyword search applications. Then multi-user SSE with rigorous and fine access control undoubtedly renders a satisfactory solution of both efficiency and security, which is the first problem worthy of our much attention. Second, functions and versatility play an essential role in a cloud storage application but it is still tricky to realize keyword search and deduplication in the cloud simultaneously. Large-scale data usually renders significant data redundancy and saving cloud storage resources turns to be inevitable. Existing schemes only facilitate data retrieval due to keywords but rarely consider other demands like deduplication. To be noted, trivially and hastily affiliating a separate deduplication scheme to the searchable encryption leads to disordered system architecture and security threats. Therefore, attention should be paid to versatile solutions supporting both keyword search and deduplication in the cloud. The third problem to be addressed is implementing multi-reader access for PEKS. As we know, PEKS was born to support multi-writers but enabling multi-readers in PEKS is challenging. Repeatedly encrypting the same keyword with different readers’ keys is not an elegant solution. In addition to keyword privacy, user anonymity coming with a multi-reader setting should also be formulated and preserved. Last but not least, existing schemes targeting centralized storage have not taken full advantage of distributed computation, which is considerable efficiency and fast response. Specifically, all testing tasks between searchable ciphertexts and trapdoor/token are fully undertaken by the only centralized cloud server, resulting in a busy system and slow response. With the help of distributed techniques, we may now look forward to a new turnaround, i.e., multiple servers jointly work to perform the testing with better efficiency and scalability. Then the intractable multi-writer/multi-reader mode supporting multi-keyword queries may also come true as a by-product. This thesis investigates searchable encryption technologies in cloud storage and distributed systems and spares effort to address the problems mentioned above. Our first work can be classified into SSE. We formulate the Multi-user Verifiable Searchable Symmetric Encryption (MVSSE) and propose a concrete scheme for multi-user access. It not only offers multi-user access and verifiability but also supports extension on updates as well as a non-single keyword index. Moreover, revocable access control is obtained that the search authority is validated each time a query is launched, different from existing mechanisms that once the search authority is granted, users can search forever. We give simulation-based proof, demonstrating our proposal possesses Universally Composable (UC)-security. Second, we come up with a redundancy elimination solution on top of searchable encryption. Following the keyword comparison approach of SSE, we formulate a hybrid primitive called Message-Locked Searchable Encryption (MLSE) derived in the way of SSE’s keyword search supporting keyword search and deduplication and present a concrete construction that enables multi-keyword query and negative keyword query as well as deduplication at a considerable small cost, i.e., the tokens are used for both search and deduplication. And it can further support Proof of Storage (PoS), testifying the content integrity in cloud storage. The semantic security is proved in Random Oracle Model using the game-based methodology. Third, as the branch of PEKS, the Broadcast Authenticated Encryption with Keyword Search (BAEKS) is proposed to bridge the gap of multi-reader access for PEKS, followed by a scheme. It not only resists Keyword Guessing Attacks (KGA) but also fills in the blank of anonymity. The scheme is proved secure under Decisional Bilinear Diffie-Hellman (DBDH) assumption in the Random Oracle Model. For distributed systems, we present a Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation framework with Multiple keys (SE-EPOM) enjoying desirable features, which can be classified into PEKS. Instead of merely deploying a single server, multiple servers are employed to execute the test algorithm in our scheme jointly. The refined search, i.e., multi-keyword query, data confidentiality, and search pattern hiding, are realized. Besides, the multi-writer/multi-reader mode comes true. It is shown that under the distributed circumstance, much efficiency can be substantially achieved by our construction. With simulation-based proof, the security of our scheme is elaborated. All constructions proposed in this thesis are formally proven according to their corresponding security definitions and requirements. In addition, for each cryptographic primitive designed in this thesis, concrete schemes are initiated to demonstrate the availability and practicality of our proposal

    Group Signatures: Provable Security, Efficient Constructions and Anonymity from Trapdoor-Holders

    Get PDF
    To date, a group signature construction which is efficient, scalable, allows dynamic adversarial joins, and proven secure in a formal model has not been suggested. In this work we give the first such construction in the random oracle model. The demonstration of an efficient construction proven secure in a formal model that captures all intuitive security properties of a certain primitive is a basic goal in cryptographic design. To this end we adapt a formal model for group signatures capturing all the basic requirements that have been identified as desirable in the area and we construct an efficient scheme and prove its security. Our construction is based on the Strong-RSA assumption (as in the work of Ateniese et al.). In our system, due to the requirements of provable security in a formal model, we give novel constructions as well as innovative extensions of the underlying mathematical requirements and properties. Our task, in fact, requires the investigation of some basic number-theoretic techniques for arguing security over the group of quadratic residues modulo a composite when its factorization is known. Along the way we discover that in the basic construction, anonymity does not depend on factoring-based assumptions, which, in turn, allows the natural separation of user join management and anonymity revocation authorities. Anonymity can, in turn, be shown even against an adversary controlling the join manager

    Homomorphic Encryption — Theory and Application

    Get PDF
    corecore