3 research outputs found

    Decoy Bandits Dueling on a Poset

    Full text link
    We adress the problem of dueling bandits defined on partially ordered sets, or posets. In this setting, arms may not be comparable, and there may be several (incomparable) optimal arms. We propose an algorithm, UnchainedBandits, that efficiently finds the set of optimal arms of any poset even when pairs of comparable arms cannot be distinguished from pairs of incomparable arms, with a set of minimal assumptions. This algorithm relies on the concept of decoys, which stems from social psychology. For the easier case where the incomparability information may be accessible, we propose a second algorithm, SlicingBandits, which takes advantage of this information and achieves a very significant gain of performance compared to UnchainedBandits. We provide theoretical guarantees and experimental evaluation for both algorithms

    Bandits Dueling on Partially Ordered Sets

    Get PDF
    International audienceWe address the problem of dueling bandits defined on partially ordered sets, or posets. In this setting, arms may not be comparable, and there may be several (incomparable) optimal arms. We propose an algorithm, UnchainedBandits, that efficiently finds the set of optimal arms —the Pareto front— of any poset even when pairs of comparable arms cannot be a priori distinguished from pairs of incomparable arms, with a set of minimal assumptions. This means that Un-chainedBandits does not require information about comparability and can be used with limited knowledge of the poset. To achieve this, the algorithm relies on the concept of decoys, which stems from social psychology. We also provide theoretical guarantees on both the regret incurred and the number of comparison required by UnchainedBandits, and we report compelling empirical results
    corecore