5,730 research outputs found

    Indirectly Encoding Neural Plasticity as a Pattern of Local Rules

    Full text link
    Biological brains can adapt and learn from past experience. In neuroevolution, i.e. evolving artificial neural networks (ANNs), one way that agents controlled by ANNs can evolve the ability to adapt is by encoding local learning rules. However, a significant problem with most such approaches is that local learning rules for every connection in the network must be discovered separately. This paper aims to show that learning rules can be effectively indirectly encoded by extending the Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) method. Adaptive HyperNEAT is introduced to allow not only patterns of weights across the connectivity of an ANN to be generated by a function of its geometry, but also patterns of arbitrary learning rules. Several such adaptive models with different levels of generality are explored and compared. The long-term promise of the new approach is to evolve large-scale adaptive ANNs, which is a major goal for neuroevolution. © 2010 Springer-Verlag

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Learning with Delayed Synaptic Plasticity

    Get PDF
    The plasticity property of biological neural networks allows them to perform learning and optimize their behavior by changing their configuration. Inspired by biology, plasticity can be modeled in artificial neural networks by using Hebbian learning rules, i.e. rules that update synapses based on the neuron activations and reinforcement signals. However, the distal reward problem arises when the reinforcement signals are not available immediately after each network output to associate the neuron activations that contributed to receiving the reinforcement signal. In this work, we extend Hebbian plasticity rules to allow learning in distal reward cases. We propose the use of neuron activation traces (NATs) to provide additional data storage in each synapse to keep track of the activation of the neurons. Delayed reinforcement signals are provided after each episode relative to the networks' performance during the previous episode. We employ genetic algorithms to evolve delayed synaptic plasticity (DSP) rules and perform synaptic updates based on NATs and delayed reinforcement signals. We compare DSP with an analogous hill climbing algorithm that does not incorporate domain knowledge introduced with the NATs, and show that the synaptic updates performed by the DSP rules demonstrate more effective training performance relative to the HC algorithm.Comment: GECCO201

    Generating functionals for computational intelligence: the Fisher information as an objective function for self-limiting Hebbian learning rules

    Get PDF
    Generating functionals may guide the evolution of a dynamical system and constitute a possible route for handling the complexity of neural networks as relevant for computational intelligence. We propose and explore a new objective function, which allows to obtain plasticity rules for the afferent synaptic weights. The adaption rules are Hebbian, self-limiting, and result from the minimization of the Fisher information with respect to the synaptic flux. We perform a series of simulations examining the behavior of the new learning rules in various circumstances. The vector of synaptic weights aligns with the principal direction of input activities, whenever one is present. A linear discrimination is performed when there are two or more principal directions; directions having bimodal firing-rate distributions, being characterized by a negative excess kurtosis, are preferred. We find robust performance and full homeostatic adaption of the synaptic weights results as a by-product of the synaptic flux minimization. This self-limiting behavior allows for stable online learning for arbitrary durations. The neuron acquires new information when the statistics of input activities is changed at a certain point of the simulation, showing however, a distinct resilience to unlearn previously acquired knowledge. Learning is fast when starting with randomly drawn synaptic weights and substantially slower when the synaptic weights are already fully adapted

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions

    Full text link
    A fundamental aspect of learning in biological neural networks is the plasticity property which allows them to modify their configurations during their lifetime. Hebbian learning is a biologically plausible mechanism for modeling the plasticity property in artificial neural networks (ANNs), based on the local interactions of neurons. However, the emergence of a coherent global learning behavior from local Hebbian plasticity rules is not very well understood. The goal of this work is to discover interpretable local Hebbian learning rules that can provide autonomous global learning. To achieve this, we use a discrete representation to encode the learning rules in a finite search space. These rules are then used to perform synaptic changes, based on the local interactions of the neurons. We employ genetic algorithms to optimize these rules to allow learning on two separate tasks (a foraging and a prey-predator scenario) in online lifetime learning settings. The resulting evolved rules converged into a set of well-defined interpretable types, that are thoroughly discussed. Notably, the performance of these rules, while adapting the ANNs during the learning tasks, is comparable to that of offline learning methods such as hill climbing.Comment: Evolutionary Computation Journa

    Towards Evolving More Brain-Like Artificial Neural Networks

    Get PDF
    An ambitious long-term goal for neuroevolution, which studies how artificial evolutionary processes can be driven to produce brain-like structures, is to evolve neurocontrollers with a high density of neurons and connections that can adapt and learn from past experience. Yet while neuroevolution has produced successful results in a variety of domains, the scale of natural brains remains far beyond reach. In this dissertation two extensions to the recently introduced Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach are presented that are a step towards more brain-like artificial neural networks (ANNs). First, HyperNEAT is extended to evolve plastic ANNs that can learn from past experience. This new approach, called adaptive HyperNEAT, allows not only patterns of weights across the connectivity of an ANN to be generated by a function of its geometry, but also patterns of arbitrary local learning rules. Second, evolvable-substrate HyperNEAT (ES-HyperNEAT) is introduced, which relieves the user from deciding where the hidden nodes should be placed in a geometry that is potentially infinitely dense. This approach not only can evolve the location of every neuron in the network, but also can represent regions of varying density, which means resolution can increase holistically over evolution. The combined approach, adaptive ES-HyperNEAT, unifies for the first time in neuroevolution the abilities to indirectly encode connectivity through geometry, generate patterns of heterogeneous plasticity, and simultaneously encode the density and placement of nodes in space. The dissertation culminates in a major application domain that takes a step towards the general goal of adaptive neurocontrollers for legged locomotion
    • …
    corecore