959 research outputs found

    An incremental three-pass system combination framework by combining multiple hypothesis alignment methods

    Get PDF
    System combination has been applied successfully to various machine translation tasks in recent years. As is known, the hypothesis alignment method is a critical factor for the translation quality of system combination. To date, many effective hypothesis alignment metrics have been proposed and applied to the system combination, such as TER, HMM, ITER, IHMM, and SSCI. In addition, Minimum Bayes-risk (MBR) decoding and confusion networks (CN) have become state-of-the-art techniques in system combination. In this paper, we examine different hypothesis alignment approaches and investigate how much the hypothesis alignment results impact on system combination, and finally present a three-pass system combination strategy that can combine hypothesis alignment results derived from multiple alignment metrics to generate a better translation. Firstly, these different alignment metrics are carried out to align the backbone and hypotheses, and the individual CNs are built corresponding to each set of alignment results; then we construct a ‘super network’ by merging the multiple metric-based CNs to generate a consensus output. Finally a modified MBR network approach is employed to find the best overall translation. Our proposed strategy outperforms the best single confusion network as well as the best single system in our experiments on the NIST Chinese-to-English test set and the WMT2009 English-to-French system combination shared test set

    A three-pass system combination framework by combining multiple hypothesis alignment methods

    Get PDF
    So far, many effective hypothesis alignment metrics have been proposed and applied to the system combination, such as TER, HMM, ITER and IHMM. In addition, the Minimum Bayes-risk (MBR) decoding and the confusion network (CN) have become the state-of-the art techniques in system combination. In this paper, we present a three-pass system combination strategy that can combine hypothesis alignment results derived from different alignment metrics to generate a better translation. Firstly the different alignment metrics are carried out to align the backbone and hypotheses, and the individual CN is built corresponding to each alignment results; then we construct a super network by merging the multiple metric-based CN and generate a consensus output. Finally a modified consensus network MBR (ConMBR) approach is employed to search a best translation. Our proposed strategy out performs the best single CN as well as the best single system in our experiments on NIST Chinese-to-English test set

    Source-side context-informed hypothesis alignment for combining outputs from machine translation systems

    Get PDF
    This paper presents a new hypothesis alignment method for combining outputs of multiple machine translation (MT) systems. Traditional hypothesis alignment algorithms such as TER, HMM and IHMM do not directly utilise the context information of the source side but rather address the alignment issues via the output data itself. In this paper, a source-side context-informed (SSCI) hypothesis alignment method is proposed to carry out the word alignment and word reordering issues. First of all, the source–target word alignment links are produced as the hidden variables by exporting source phrase spans during the translation decoding process. Secondly, a mapping strategy and normalisation model are employed to acquire the 1- to-1 alignment links and build the confusion network (CN). The source-side context-based method outperforms the state-of-the-art TERbased alignment model in our experiments on the WMT09 English-to-French and NIST Chinese-to-English data sets respectively. Experimental results demonstrate that our proposed approach scores consistently among the best results across different data and language pair conditions

    System combination with extra alignment information

    Get PDF
    This paper provides the system description of the IHMM team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). Our work is based on a confusion network-based approach to system combination. We propose a new method to build a confusion network for this: (1) incorporate extra alignment information extracted from given meta data, treating them as sure alignments, into the results from IHMM, and (2) decode together with this information. We also heuristically set one of the system outputs as the default backbone. Our results show that this backbone, which is the RBMT system output, achieves an 0.11% improvement in BLEU over the backbone chosen by TER, while the extra information we added in the decoding part does not improve the results

    Using TERp to augment the system combination for SMT

    Get PDF
    TER-Plus (TERp) is an extended TER evaluation metric incorporating morphology, synonymy and paraphrases. There are three new edit operations in TERp: Stem Matches, Synonym Matches and Phrase Substitutions (Para-phrases). In this paper, we propose a TERp-based augmented system combination in terms of the backbone selection and consensus decoding network. Combining the new properties\ud of the TERp, we also propose a two-pass decoding strategy for the lattice-based phrase-level confusion network(CN) to generate the final result. The experiments conducted on the NIST2008 Chinese-to-English test set show that our TERp-based augmented system combination framework achieves significant improvements in terms of BLEU and TERp scores compared to the state-of-the-art word-level system combination framework and a TER-based combination strategy

    Sentence-level quality estimation for MT system combination

    Get PDF
    This paper provides the system description of the Dublin City University system combination module for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimize the Division of Labour in Hybrid MT (ML4HMT- 12). We incorporated a sentence-level quality score, obtained by sentence-level Quality Estimation (QE), as meta information guiding system combination. Instead of using BLEU or (minimum average) TER, we select a backbone for the confusion network using the estimated quality score. For the Spanish-English data, our strategy improved 0.89 BLEU points absolute compared to the best single score and 0.20 BLEU points absolute compared to the standard system combination strateg
    corecore