8 research outputs found

    Indirect Synchronisation Vulnerabilities in the IEC 60870-5-104 Standard

    Get PDF

    Creating Synthetic Attacks with Evolutionary Algorithms for Proactive Defense of Industrial Control Systems

    Get PDF
    Industrial control systems (ICS) play an important role in critical infrastructure. Cybersecurity defenders can use honeypots (decoy systems) to capture and study malicious ICS traffic. A problem with existing ICS honeypots is their low interactivity, causing intruders to quickly abandon the attack attempts. This research aims to improve ICS honeypots by feeding them realistic artificially generated packets and examining their behavior to proactively identify functional gaps in defenses. Our synthetic attack generator (SAGO) uses an evolutionary algorithm on known attack traffic to create new variants of Log4j exploits (CVE-2021-44228) and Industroyer2 malware. We tested over 5,200 and 256 unique Log4j and IEC 104 variations respectively, with success rates up to 70 percent for Log4j and 40 percent for IEC 104. We identified improvements to our honeypot’s interactivity based on its responses to these attacks. Our technique can aid defenders in hardening perimeter protection against new attack variants

    CREATING SYNTHETIC ATTACKS WITH EVOLUTIONARY ALGORITHMS FOR INDUSTRIAL-CONTROL-SYSTEM SECURITY TESTING

    Get PDF
    Cybersecurity defenders can use honeypots (decoy systems) to capture and study adversarial activities. An issue with honeypots is obtaining enough data on rare attacks. To improve data collection, we created a tool that uses machine learning to generate plausible artificial attacks on two protocols, Hypertext Transfer Protocol (HTTP) and IEC 60870-5-104 (“IEC 104” for short, an industrial-control-system protocol). It uses evolutionary algorithms to create new variants of two cyberattacks: Log4j exploits (described in CVE-2021-44228 as severely critical) and the Industroyer2 malware (allegedly used in Russian attacks on Ukrainian power grids). Our synthetic attack generator (SAGO) effectively created synthetic attacks at success rates up to 70 and 40 percent for Log4j and IEC 104, respectively. We tested over 5,200 unique variations of Log4j exploits and 256 unique variations of the approach used by Industroyer2. Based on a power-grid honeypot’s response to these attacks, we identified changes to improve interactivity, which should entice intruders to mount more revealing attacks and aid defenders in hardening against new attack variants. This work provides a technique to proactively identify cybersecurity weaknesses in critical infrastructure and Department of Defense assets.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    The IACS Cybersecurity Certification Framework (ICCF). Lessons from the 2017 study of the state of the art.

    Get PDF
    The principal goal of this report is to present the experiments of the IACS component Cybersecurity Certification Framework (ICCF) performed in 2017 by the NETs (National Exercise Teams) of several Member States, namely France, Poland and Spain. Based on real life use cases and simulations of ICCF activities, this report documents the current practices of these countries and NET members’ views in relation to IACS products cybersecurity certification. These studies have led to a series of findings that will be useful for the future of the ICCF in the context of the European Cybersecurity Certification Framework. In conclusion, a plan of action is proposed for the 2018-2019 period.JRC.E.2-Technology Innovation in Securit

    Architecture, Services and Protocols for CRUTIAL

    Get PDF
    This document describes the complete specification of the architecture, services and protocols of the project CRUTIAL. The CRUTIAL Architecture intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures (CII), in particular in the electrical sector. In general lines, the document starts by presenting the main architectural options and components of the architecture, with a special emphasis on a protection device called the CRUTIAL Information Switch (CIS). Given the various criticality levels of the equipments that have to be protected, and the cost of using a replicated device, we define a hierarchy of CIS designs incrementally more resilient. The different CIS designs offer various trade offs in terms of capabilities to prevent and tolerate intrusions, both in the device itself and in the information infrastructure. The Middleware Services, APIs and Protocols chapter describes our approach to intrusion tolerant middleware. The CRUTIAL middleware comprises several building blocks that are organized on a set of layers. The Multipoint Network layer is the lowest layer of the middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support layer features three important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), the CIS Communication service and the Fosel service for mitigating DoS attacks. The Activity Support layer comprises the CIS Protection service, and the Access Control and Authorization service. The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII’s organizations. The Monitoring and Failure Detection layer contains a definition of the services devoted to monitoring and failure detection activities. The Runtime Support Services, APIs, and Protocols chapter features as a main component the Proactive-Reactive Recovery service, whose aim is to guarantee perpetual correct execution of any components it protects.Project co-funded by the European Commission within the Sixth Frame-work Programme (2002-2006

    Agile Processes in Software Engineering and Extreme Programming – Workshops

    Get PDF
    This open access book constitutes papers from the 5 research workshops, the poster presentations, as well as two panel discussions which were presented at XP 2021, the 22nd International Conference on Agile Software Development, which was held online during June 14-18, 2021. XP is the premier agile software development conference combining research and practice. It is a unique forum where agile researchers, practitioners, thought leaders, coaches, and trainers get together to present and discuss their most recent innovations, research results, experiences, concerns, challenges, and trends. XP conferences provide an informal environment to learn and trigger discussions and welcome both people new to agile and seasoned agile practitioners. The 18 papers included in this volume were carefully reviewed and selected from overall 37 submissions. They stem from the following workshops: 3rd International Workshop on Agile Transformation 9th International Workshop on Large-Scale Agile Development 1st International Workshop on Agile Sustainability 4th International Workshop on Software-Intensive Business 2nd International Workshop on Agility with Microservices Programmin

    Protection of data privacy based on artificial intelligence in Cyber-Physical Systems

    Full text link
    With the rapid evolution of cyber attack techniques, the security and privacy of Cyber-Physical Systems (CPSs) have become key challenges. CPS environments have several properties that make them unique in efforts to appropriately secure them when compared with the processes, techniques and processes that have evolved for traditional IT networks and platforms. CPS ecosystems are comprised of heterogeneous systems, each with long lifespans. They use multitudes of operating systems and communication protocols and are often designed without security as a consideration. From a privacy perspective, there are also additional challenges. It is hard to capture and filter the heterogeneous data sources of CPSs, especially power systems, as their data should include network traffic and the sensing data of sensors. Protecting such data during the stages of collection, analysis and publication still open the possibility of new cyber threats disrupting the operational loops of power systems. Moreover, while protecting the original data of CPSs, identifying cyberattacks requires intrusion detection that produces high false alarm rates. This thesis significantly contributes to the protection of heterogeneous data sources, along with the high performance of discovering cyber-attacks in CPSs, especially smart power networks (i.e., power systems and their networks). For achieving high data privacy, innovative privacy-preserving techniques based on Artificial Intelligence (AI) are proposed to protect the original and sensitive data generated by CPSs and their networks. For cyber-attack discovery, meanwhile applying privacy-preserving techniques, new anomaly detection algorithms are developed to ensure high performances in terms of data utility and accuracy detection. The first main contribution of this dissertation is the development of a privacy preservation intrusion detection methodology that uses the correlation coefficient, independent component analysis, and Expectation Maximisation (EM) clustering algorithms to select significant data portions and discover cyber attacks against power networks. Before and after applying this technique, machine learning algorithms are used to assess their capabilities to classify normal and suspicious vectors. The second core contribution of this work is the design of a new privacy-preserving anomaly detection technique protecting the confidential information of CPSs and discovering malicious observations. Firstly, a data pre-processing technique filters and transforms data into a new format that accomplishes the aim of preserving privacy. Secondly, an anomaly detection technique using a Gaussian mixture model which fits selected features, and a Kalman filter technique that accurately computes the posterior probabilities of legitimate and anomalous events are employed. The third significant contribution of this thesis is developing a novel privacy-preserving framework for achieving the privacy and security criteria of smart power networks. In the first module, a two-level privacy module is developed, including an enhanced proof of work technique-based blockchain for accomplishing data integrity and a variational autoencoder approach for changing the data to an encoded data format to prevent inference attacks. In the second module, a long short-term memory deep learning algorithm is employed in anomaly detection to train and validate the outputs from the two-level privacy modules
    corecore