393 research outputs found

    Imaging in UWB Sensor Networks

    Get PDF

    Review of Detection and Monitoring Systems for Buried High Pressure Pipelines:Final Report

    Get PDF
    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000 kilometers of high-pressure transportation pipelines. Because they are located under the ground, these pipelines are subject to excavation damages. Incidents in them Belgian Gellingen (2004) and German Ludwigshafen (2014) show that consequences of pipeline damages are significant. They can cause fatalities to excavation workers and impact the environment too. In addition, only direct costs for recovery of damages are estimated by the pipeline owner association (VELIN) to range already from several hundreds of thousands to even a few millions of euros. This figure does not yet include the indirect costs. Serious incidents will eventually undermine the public’s acceptance for hazardous pipelines, so it goes without saying that pipeline excavation incidents should, therefore, be avoided. Nowadays, third parties seem to be causing most of the damage to underground pipelines (Capstick, 2007; CONCAWE, 2013; EGIG, 2015; J. M. Muggleton & Rustighi, 2013). Reasons for this, often mentioned by industry, are that utility location information (KLIC-melding) is not always available and, when available, it is not always accurate or too difficult to interpret by excavator operators. It is crucial to detect underground infrastructure in a timely fashion to avoid damages. For this purpose, initiatives are needed to help excavator operators to detect pipelines and monitor groundworks taking place close to pipelines. Such initiatives could focus on the identification and the development of technologies for pipeline strike avoidance. The first step in this direction was this study – which in turn is related to the Safety Deals that are prepared by the association of pipeline owners in the Netherlands (VELIN) and the Dutch Ministry of Infrastructure and the Environment. VELIN and I&M requested the University of Twente to systematically review existing technologies for excavation damage avoidance. Such an overview is not available to the Dutch industry to date. The project team therefore identified and described existing systems for global monitoring and detection of utilities. These systems eventually help detect clashes between excavator equipment and high-pressure transportation pipelines

    Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar

    Get PDF
    This research studies the AFIT noise network (NoNET) radar node design and the feasibility in processing the bistatic channel information of a cluster of widely distributed noise radar nodes. A system characterization is used to predict theoretical localization performance metrics. Design and integration of a distributed and central signal and data processing architecture enables the Matlab®-driven signal data acquisition, digital processing and multi-sensor image fusion. Experimental evaluation of the monostatic localization performance reveals its range measurement error standard deviation is 4.8 cm with a range resolution of 87.2(±5.9) cm. The 16-channel multistatic solution results in a 2-dimensional localization error of 7.7(±3.1) cm and a comparative analysis is performed against the netted monostatic solution. Results show that active sensing with a low probability of intercept (LPI) multistatic radar, like the NoNET, is capable of producing sub-meter accuracy and near meter-resolution imagery

    Breathfinding: A Wireless Network that Monitors and Locates Breathing in a Home

    Full text link
    This paper explores using RSS measurements on many links in a wireless network to estimate the breathing rate of a person, and the location where the breathing is occurring, in a home, while the person is sitting, laying down, standing, or sleeping. The main challenge in breathing rate estimation is that "motion interference", i.e., movements other than a person's breathing, generally cause larger changes in RSS than inhalation and exhalation. We develop a method to estimate breathing rate despite motion interference, and demonstrate its performance during multiple short (3-7 minute) tests and during a longer 66 minute test. Further, for the same experiments, we show the location of the breathing person can be estimated, to within about 2 m average error in a 56 square meter apartment. Being able to locate a breathing person who is not otherwise moving, without calibration, is important for applications in search and rescue, health care, and security

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains
    • …
    corecore