309 research outputs found

    Indirect Encoding Evolutionary Learning Algorithm for the Multilayer Morphological Perceptron

    Get PDF
    Abstract This article describes an indirectly encoded evolutionary learning algorithm to train morphological neural networks. The indirect encoding method is an algorithm in which the training of the neural network is done by finding the solution without considering the exact connectivity of the network. Looking for the set of weights and architecture in a reduced search space, this simple, but powerful training algorithm is able to evolve to a feasible solution using up to three layers required to perform the pattern classification. This type of representation provides the necessary compactness required by large networks. The algorithm was tested using Iris Fisher data and a prototype was written using Matlab

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca

    Analysis and classification of EEG signals using mixture of features and committee neural network

    Get PDF
    Electroencephalography signal is the recording of electrical activity of brain, provides valuable information of the brain function and neurological disorder. this paper proposed committee neural network for classification of EEG signals. Committee neural network consists of different neural network that used multilayer perceptron back propagation algorithm. The number of input node and hidden node selection for artificial neural network remains an important issues, as over parametrized ANN gets trapped in local minima resulting non convergence of ANN structure during training. Redundant features and excessive hidden nodes of ANN increases modeling complexity without improving discrimination performance. Therefore optimum design of neural network which intern optimizes the committee neural network is required towards real time detection of EEG signals. The present work attempts to: (i) develop feature extraction algorithm which combines the score generated from autoregressive based feature and wavelet based feature for better classification of EEG signals, (ii) a two-level committee neural network is proposed based on the decision of several neural networks, (iii) select a set of input features that are effective for identification of EEG signal using genetic algorithm, (iv) make certain optimum selection of nodes in the hidden layer using genetic algorithm for each ANN structure of two-level CNN to get effective classification of EEG signal. It is observed that the performance of proposed technique is better than the earlier established techniques (combined neural network based model and wavelet/ mixture of experts network based approach) and the technique that uses artificial neural network with back propagation multilayer perceptro

    A Neuro-Evolutionary Corpus-Based Method for Word Sense Disambiguation

    Get PDF
    International audienceWe propose a supervised approach to Word Sense Disambiguation based on Neural Networks combined with Evolutionary Algorithms. An established method to automatically design the structure and learn the connection weights of Neural Networks by means of an Evolutionary Algorithm is used to evolve a neural-network disambiguator for each polysemous word, against a dataset extracted from an annotated corpus. Two distributed encoding schemes, based on the orthography of words and characterized by different degrees of information compression, have been used to represent the context in which a word occurs. The performance of such encoding schemes has been compared. The viability of the approach has been demonstrated through experiments carried out on a representative set of polysemous words. Comparison with the best entry of the Semeval-2007 competition has shown that the proposed approach is almost competitive with state-of-the-art WSD approaches

    The evolution of modular artificial neural networks.

    Get PDF
    This thesis describes a novel approach to the evolution of Modular Artificial Neural Networks. Standard Evolutionary Algorithms, used in this application include: Genetic Algorithms, Evolutionary Strategies, Evolutionary Programming and Genetic Programming; however, these often fail in the evolution of complex systems, particularly when such systems involve multi-domain sensory information which interacts in complex ways with system outputs. The aim in this work is to produce an evolutionary method that allows the structure of the network to evolve from simple to complex as it interacts with a dynamic environment. This new algorithm is therefore based on Incremental Evolution. A simulated model of a legged robot was used as a test-bed for the approach. The algorithm starts with a simple robotic body plan. This then grows incrementally in complexity along with its controlling neural network and the environment it reacts with. The network grows by adding modules to its structure - so the technique may also be termed a Growth Algorithm. Experiments are presented showing the successful evolution of multi-legged gaits and a simple vision system. These are then integrated together to form a complete robotic system. The possibility of the evolution of complex systems is one advantage of the algorithm and it is argued that it represents a possible path towards more advanced artificial intelligence. Applications in Electronics, Computer Science, Mechanical Engineering and Aerospace are also discussed

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    An infrastructure for neural network construction

    Get PDF
    After many years of research the area of Artificial Intelligence is still searching for ways to construct a truly intelligent system. One criticism is that current models are not 'rich' or complex enough to operate in many and varied real world situations. One way to tackle this criticism is to look at intelligent systems that already exist in nature and examine these to determine what complexities exist in these systems and not in the current Al models. The research begins by presenting an overview of the current knowledge of Biological Neural Networks, as examples of intelligent systems existing in nature, and how they function. Artificial Neural networks are then discussed and the thesis examines their similarities and dissimilarities with their biological counterparts. The research suggests ways that Artificial Neural Networks may be improved by borrowing ideas from Biological Neural Networks. By introducing new concepts drawn from the biological realm, the construction of the Artificial Neural Networks becomes more difficult. To solve this difficulty, the thesis introduces the area of Evolutionary Algorithms as a way of constructing Artificial Neural Networks. An intellectual infrastructure is developed that incorporates concepts from Biological Neural Networks into current models of Artificial Neural Networks and two models are developed to explore the concept that increased complexity can indeed add value to the current models of Artificial Neural Networks. The outcome of the thesis shows that increased complexity can have benefits in terms of learning speed of an Artificial Neural Network and in terms of robustness to damage.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computer-aided disease diagnosis in aquaculture: current state and perspectives for the future.

    Get PDF
    ABSTRACT. Automation of essential processes in agriculture is becoming widespread, especially when fast action is required. However, some processes that could greatly benefit from some degree of automation have such difficult characteristics, that even small improvements pose a great challenge. This is the case of fish disease diagnosis, a problem of great economic, social and ecological interest. Difficult problems like this often require a interdisciplinary approach to be tackled properly, as multifaceted issues can greatly benefit from the inclusion of different perspectives. In this context, this paper presents the most recent advances in research subjects such as expert systems applied to fish disease diagnosis, computer vision applied to aquaculture, and image-based disease diagnosis applied to agriculture, and discusses how those advances may be combined to support future developments towards more effective diagnosis tools. The paper finishes suggesting a possible solution to increase the degree of automation of fish disease diagnosis tools
    corecore