342 research outputs found

    A reliability study for the proposed Substation 13 microgrid at Murdoch University

    Get PDF
    As technology continues to develop and improve, the modern world is experiencing a significant transition from the traditional concept of large-scale, centralised power generation to a future incorporating distributed energy resources (DER) closer to local loads. Microgrids provide a sustainable solution for growing energy demands by integrating renewable energy (RE) generation with energy storage (ES) technologies, backed up with traditional generation methods, placing a higher reliance on the abundance of renewable resources such as solar or wind energy and a decreased reliance upon diminishing fossil fuels. With careful planning and design regarding placement and sizing of DER and ES, as well as a robust control and energy management strategy, the implementation of the embedded microgrid concept at a large commercial entity such as Murdoch University (MU) can have significant benefits including enhanced system reliability and reduced operational expenditure. The significant objective of this project was to analyse the reliability of the current electrical network that exists within the Substation 13 precinct at MU and compare the results with a reliability analysis of the proposed upgraded Substation 13 electrical network. The aim of such a comparison was to determine whether the electrical performance and reliability had improved following the implementation of the proposed upgraded network and that electrical supply can be maintained to critical loads during a grid outage scenario. The analysis and simulations of either network models was to be carried out using the PowerFactory software package, with a number of critical reliability indices identified within literature to provide the basis of comparison. The output results from the model simulations and reliability analysis demonstrated a notable and favourable increase in system reliability following the network upgrades under grid outage scenarios. This demonstrated that under the new proposed network configurations and an outage event, the critical connected loads could still be reliably supplied via the implementation of an embedded microgrid, which utilises distributed renewable generation and energy storage, backed up by traditional generation sources. The substantial benefit highlighted by these simulation results is that the requirement of risk mitigation, by providing uninterrupted power supply (UPS) for the critical loads, is in fact fulfilled under the new network upgrade proposal

    Renewable Energies for Sustainable Development

    Get PDF
    In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed

    Emerging Technologies for the Energy Systems of the Future

    Get PDF
    Energy systems are transiting from conventional energy systems to modernized and smart energy systems. This Special Issue covers new advances in the emerging technologies for modern energy systems from both technical and management perspectives. In modern energy systems, an integrated and systematic view of different energy systems, from local energy systems and islands to national and multi-national energy hubs, is important. From the customer perspective, a modern energy system is required to have more intelligent appliances and smart customer services. In addition, customers require the provision of more useful information and control options. Another challenge for the energy systems of the future is the increased penetration of renewable energy sources. Hence, new operation and planning tools are required for hosting renewable energy sources as much as possible

    Emerging Technologies for the Energy Systems of the Future

    Get PDF

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Towards smart city models: evaluation of methods and performance indexes for the smart urban contexts development

    Get PDF
    Today, cities are facing many challenges such as pollution, resource consumption, gas emissions and social inequality. Many future city views have been developed to solve these issues such as the Smart City model. In literature several methods have been proposed to plan a Smart city, but, only a few of them have been really applied to the urban context. Most of them are indeed theoretical and qualitative approaches, providing scenarios that have not been applied to real universities campus/cities/districts. In this framework, the aim of this thesis is to integrate a previous qualitative smart method and transform it into a quantitative and ex-post one. The feasibility and validity of the method will be tested through the comparison with another existing model and the application of both approaches on two real case studies, characterized by different territorial levels. Finally, the flexibility of this new quantitative smart methodology is demonstrated throughout its application on another two urban contexts: highland villages and the Italian suburb. Results of the analysis show that this smart method is reliable and provide coherent results, becoming a useful instrument for designers and planners for the identification of the most performing Smart strategies

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Management of Distributed Energy Storage Systems for Provisioning of Power Network Services

    Full text link
    Because of environmentally friendly reasons and advanced technological development, a significant number of renewable energy sources (RESs) have been integrated into existing power networks. The increase in penetration and the uneven allocation of the RESs and load demands can lead to power quality issues and system instability in the power networks. Moreover, high penetration of the RESs can also cause low inertia due to a lack of rotational machines, leading to frequency instability. Consequently, the resilience, stability, and power quality of the power networks become exacerbated. This thesis proposes and develops new strategies for energy storage (ES) systems distributed in power networks for compensating for unbalanced active powers and supply-demand mismatches and improving power quality while taking the constraints of the ES into consideration. The thesis is mainly divided into two parts. In the first part, unbalanced active powers and supply-demand mismatch, caused by uneven allocation and distribution of rooftop PV units and load demands, are compensated by employing the distributed ES systems using novel frameworks based on distributed control systems and deep reinforcement learning approaches. There have been limited studies using distributed battery ES systems to mitigate the unbalanced active powers in three-phase four-wire and grounded power networks. Distributed control strategies are proposed to compensate for the unbalanced conditions. To group households in the same phase into the same cluster, algorithms based on feature states and labelled phase data are applied. Within each cluster, distributed dynamic active power balancing strategies are developed to control phase active powers to be close to the reference average phase power. Thus, phase active powers become balanced. To alleviate the supply-demand mismatch caused by high PV generation, a distributed active power control system is developed. The strategy consists of supply-demand mismatch and battery SoC balancing. Control parameters are designed by considering Hurwitz matrices and Lyapunov theory. The distributed ES systems can minimise the total mismatch of power generation and consumption so that reverse power flowing back to the main is decreased. Thus, voltage rise and voltage fluctuation are reduced. Furthermore, as a model-free approach, new frameworks based on Markov decision processes and Markov games are developed to compensate for unbalanced active powers. The frameworks require only proper design of states, action and reward functions, training, and testing with real data of PV generations and load demands. Dynamic models and control parameter designs are no longer required. The developed frameworks are then solved using the DDPG and MADDPG algorithms. In the second part, the distributed ES systems are employed to improve frequency, inertia, voltage, and active power allocation in both islanded AC and DC microgrids by novel decentralized control strategies. In an islanded DC datacentre microgrid, a novel decentralized control of heterogeneous ES systems is proposed. High- and low frequency components of datacentre loads are shared by ultracapacitors and batteries using virtual capacitive and virtual resistance droop controllers, respectively. A decentralized SoC balancing control is proposed to balance battery SoCs to a common value. The stability model ensures the ES devices operate within predefined limits. In an isolated AC microgrid, decentralized frequency control of distributed battery ES systems is proposed. The strategy includes adaptive frequency droop control based on current battery SoCs, virtual inertia control to improve frequency nadir and frequency restoration control to restore system frequency to its nominal value without being dependent on communication infrastructure. A small-signal model of the proposed strategy is developed for calculating control parameters. The proposed strategies in this thesis are verified using MATLAB/Simulink with Reinforcement Learning and Deep Learning Toolboxes and RTDS Technologies' real-time digital simulator with accurate power networks, switching levels of power electronic converters, and a nonlinear battery model
    corecore